From Seiichi Manyama, Aug 19 2018: (Start)
Phi_0(t)/1 = 1 + 120*t + 83160*t^2 + ... (See A001421).
Phi_1(t)/(84*t) = 1 + 450*t + 394680*t^2 + ... (See A145492).
Phi_2(t)/(27720*t^2)
= (1 + 450*t + 394680*t^2 + ... - (1 + 120*t + 83160*t^2 + ... ))/(330*t)
= 1 + 944*t + 1054170*t^2 + ... (See A145493).
Phi_3(t)/(13693680*t^3)
= (1 + 944*t + 1054170*t^2 + ... - (1 + 450*t + 394680*t^2 + ... ))/(494*t)
= 1 + 1335*t + 1757970*t^2 + ... (See A145494).
Phi_4(t)/(5354228880*t^4)
= (1 + 1335*t + 1757970*t^2 + ... - (1 + 944*t + 1054170*t^2 + ... ))/(391*t)
= 1 + 1800*t + 2783760*t^2 + ... .
Phi_5(t)/(2489716429200*t^5)
= (1 + 1800*t + 2783760*t^2 + ... - (1 + 1335*t + 1757970*t^2 + ... ))/(465*t)
= 1 + 2206*t + 3863952*t^2 + ... .
Phi_6(t)/(1010824870255200*t^6)
= (1 + 2206*t + 3863952*t^2 + ... - (1 + 1800*t + 2783760*t^2 + ... ))/(406*t)
= 1 + 18624/7*t + 36827541/7*t^2 + ... .
Phi_7(t)/(459492105307435200*t^6)
= (1 + 18624/7*t + 36827541/7*t^2 + ... - (1 + 2206*t + 3863952*t^2 + ... ))/((3182/7)*t)
= 1 + (6147/2)*t + 6715687*t^2 + ... . (End)
|