login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145495 Coefficients of certain power series associated with Atkin polynomials (see Kaneko-Zagier reference for precise definition). 1
1, 84, 27720, 13693680, 5354228880, 2489716429200, 1010824870255200, 459492105307435200, 189737418627305920800, 85223723866764909426000, 35532611270849849570013600, 15842376246977818384652245440, 6646596943618421076833646609600, 2948532659526725719238433845966400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..379

M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998

FORMULA

From Seiichi Manyama, Aug 19 2018: (Start)

a(n) = (6*n+1)!/((n-1)!*(2*n)!*(3*n)!*(6*n+(-1)^n)) for n > 0.

a(n) = 12*(6*n-6+(-1)^(n-1))*(6*n+(-1)^(n-1))*a(n-1)/((n-1)*n) for n > 1. (End)

EXAMPLE

From Seiichi Manyama, Aug 19 2018: (Start)

Phi_0(t)/1 = 1 + 120*t + 83160*t^2 + ... (See A001421).

Phi_1(t)/(84*t) = 1 + 450*t + 394680*t^2 + ... (See A145492).

Phi_2(t)/(27720*t^2)

= (1 + 450*t + 394680*t^2 + ... - (1 + 120*t + 83160*t^2 + ... ))/(330*t)

= 1 + 944*t + 1054170*t^2 + ... (See A145493).

Phi_3(t)/(13693680*t^3)

= (1 + 944*t + 1054170*t^2 + ... - (1 + 450*t + 394680*t^2 + ... ))/(494*t)

= 1 + 1335*t + 1757970*t^2 + ... (See A145494).

Phi_4(t)/(5354228880*t^4)

= (1 + 1335*t + 1757970*t^2 + ... - (1 + 944*t + 1054170*t^2 + ... ))/(391*t)

= 1 + 1800*t + 2783760*t^2 + ... .

Phi_5(t)/(2489716429200*t^5)

= (1 + 1800*t + 2783760*t^2 + ... - (1 + 1335*t + 1757970*t^2 + ... ))/(465*t)

= 1 + 2206*t + 3863952*t^2 + ... .

Phi_6(t)/(1010824870255200*t^6)

= (1 + 2206*t + 3863952*t^2 + ... - (1 + 1800*t + 2783760*t^2 + ... ))/(406*t)

= 1 + 18624/7*t + 36827541/7*t^2 + ... .

Phi_7(t)/(459492105307435200*t^6)

= (1 + 18624/7*t + 36827541/7*t^2 + ... - (1 + 2206*t + 3863952*t^2 + ... ))/((3182/7)*t)

= 1 + (6147/2)*t + 6715687*t^2 + ... . (End)

CROSSREFS

Cf. A001421, A145492, A145493, A145494.

Sequence in context: A289325 A202923 A232914 * A275452 A269933 A184126

Adjacent sequences: A145492 A145493 A145494 * A145496 A145497 A145498

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 28 2009

EXTENSIONS

More terms from Seiichi Manyama, Aug 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 27 05:46 EDT 2023. Contains 361554 sequences. (Running on oeis4.)