login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145452
a(n) = (1/(10*sqrt(2)))*((1 + sqrt(2))^(3^n) - (1 - sqrt(2))^(3^n)).
3
1, 197, 1529074009, 715015595589726925478809323773, 73109958817558064847374518951460268418149511794461927024546978118655493358310911623870212081
OFFSET
1,2
LINKS
FORMULA
a(n) = (1/(10*sqrt(2)))*((1 + sqrt(2))^(3^n) - (1 - sqrt(2))^(3^n)).
a(n+1) = 200*a(n)^3 - 3*a(n), a(1) = 1.
a(n) = A000129(3^n)/5 . - R. J. Mathar, Jan 18 2021
MATHEMATICA
Table[Simplify[Expand[(1/(10Sqrt[2]))((1+Sqrt[2])^(3^n) + (1-Sqrt[2])^(3^n))]], {n, 5}]
Fibonacci[3^Range[6], 2]/5 (* G. C. Greubel, Mar 25 2022 *)
PROG
(Magma) [Evaluate(DicksonSecond(3^n -1, -1), 2)/5: n in [1..6]]; // G. C. Greubel, Mar 25 2022
(Sage) [lucas_number1(3^n, 2, -1)/5 for n in (1..6)] # G. C. Greubel, Mar 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 10 2008
EXTENSIONS
Offset corrected by R. J. Mathar, Jan 18 2021
STATUS
approved