login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^n in expansion of x/((1-x-x^3)*(1-x)^(n-1)), also diagonal of A144903.
22

%I #23 Apr 08 2024 14:40:52

%S 0,1,2,6,21,76,280,1045,3937,14938,56993,218414,840090,3241153,

%T 12537263,48604755,188799962,734631798,2862843281,11171582151,

%U 43647688211,170720728344,668414462009,2619400928928,10273572796046,40325085206853,158393604268277

%N Coefficient of x^n in expansion of x/((1-x-x^3)*(1-x)^(n-1)), also diagonal of A144903.

%H Alois P. Heinz, <a href="/A144904/b144904.txt">Table of n, a(n) for n = 0..500</a>

%F a(n) = [x^n] x/((1-x-x^3)*(1-x)^(n-1)).

%F From _G. C. Greubel_, Jul 27 2022: (Start)

%F a(n) = Sum_{j=0..floor((n-1)/3)} binomial(2*n-2*j-2, n+j-1).

%F a(n) = A099567(2*n, n). (End)

%F a(n) = binomial(2*(n-1), n-1)*hypergeom([1, (1-n)/3, (2-n)/3, 1-n/3], [1-n, 3/2-n, n], -27/4) for n > 0. - _Stefano Spezia_, Apr 06 2024

%F a(n) ~ 4^n/(3*sqrt(Pi*n)). - _Vaclav Kotesovec_, Apr 08 2024

%p A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:

%p a:= n-> A(n,n):

%p seq(a(n), n=0..30);

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n<3, n,

%p ((27*n^3-150*n^2+195*n-12)*a(n-1)

%p -(66*n^3-382*n^2+492*n+124)*a(n-2)

%p +(27*n^3-156*n^2+201*n+48)*a(n-3)

%p -2*(2*n-7)*(3*n^2-7*n-2)*a(n-4))/((n-1)*(3*n^2-13*n+8)))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 06 2013

%t Table[Sum[Binomial[2*n-2*j-2, n+j-1], {j,0,Floor[(n-1)/3]}], {n,0,40}] (* _G. C. Greubel_, Jul 27 2022 *)

%o (Magma)

%o A144904:= func< n | n eq 0 select 0 else (&+[Binomial(2*n-2*j-2, n+j-1): j in [0..Floor((n-1)/3)]]) >;

%o [A144904(n): n in [0..40]]; // _G. C. Greubel_, Jul 27 2022

%o (SageMath)

%o def A144904(n): return sum(binomial(2*n-2*j-2, n+j-1) for j in (0..((n-1)//3)))

%o [A144904(n) for n in (0..40)] # _G. C. Greubel_, Jul 27 2022

%Y Cf. A099567, A144903.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 24 2008