login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144539
Unique sequence of digits a(0), a(1), a(2), .. such that for all k >= 2, the number A(k) := Sum_{n = 0..k-1 } a(n)*10^n satisfies 11^A(k) == A(k) mod 10^k.
16
1, 1, 6, 6, 6, 6, 2, 7, 1, 9, 7, 8, 3, 0, 7, 6, 6, 2, 0, 2, 7, 1, 9, 8, 7, 9, 3, 4, 3, 2, 6, 9, 8, 1, 1, 7, 5, 1, 0, 2, 0, 4, 5, 9, 4, 3, 9, 9, 9, 4, 5, 3, 9, 3, 9, 2, 4, 3, 8, 4, 1, 6, 0, 5, 6, 8, 8, 0, 6, 4, 2, 9, 2, 6, 1, 6, 6, 4, 0, 9, 0, 3, 9, 4, 9, 6, 8, 9, 0, 8, 6, 9, 1, 8, 7, 5, 0, 5, 8, 6, 7, 4, 6, 5, 3
OFFSET
0,3
REFERENCES
M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, p. 69-78. ISBN 978-88-6178-789-6.
Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
LINKS
J. Jimenez Urroz and J. Luis A. Yebra, On the equation a^x == x (mod b^n), J. Int. Seq. 12 (2009) #09.8.8.
EXAMPLE
116666271978307662027198793432698117510204594399945393924384160568806429261664...
MATHEMATICA
(* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[11, n + 1, 10^n]; Reverse@ IntegerDigits@ f@ 105 (* Robert G. Wilson v, Mar 06 2014 *)
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 20 2008
EXTENSIONS
a(68) onward from Robert G. Wilson v, Mar 06 2014
STATUS
approved