This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A144413 Euler difference transform on the Padovan sequence A000931: b(n)=b(n-2)+b(n-3); a(n)=Sum[(-1)^m*Binomial[n, m]*b(n - m), {m, 0, n}]. 0
 0, 1, -1, 1, 0, -3, 10, -24, 49, -89, 145, -208, 245, -174, -176, 1121, -3185, 7137, -13920, 24301, -37926, 51256, -53615, 20407, 97265, -386224, 984549, -2083934, 3896480, -6537023, 9734175 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 REFERENCES Weisstein, Eric W. "Euler Transform." http://mathworld.wolfram.com/EulerTransform.html LINKS FORMULA b(n)=b(n-2)+b(n-3); a(n)=Sum[(-1)^m*Binomial[n, m]*b(n - m), {m, 0, n}]. a(n)= -3*a(n-1)-2*a(n-2)+a(n-3). G.f.: x(1+2x)/(1+3x+2x^2-x^3). [From R. J. Mathar, Jan 21 2009] MATHEMATICA Clear[f, n, a]; a[0] = 0; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 2] + a[n - 3]; f[n_] := Sum[(-1)^m*Binomial[n, m]*a[n - m], {m, 0, n}]; Table[f[n], {n, 0, 30}] CROSSREFS Cf. A000931, A000073, A073358. Sequence in context: A259443 A293405 A029880 * A033811 A062446 A053208 Adjacent sequences:  A144410 A144411 A144412 * A144414 A144415 A144416 KEYWORD uned,sign AUTHOR Roger L. Bagula and Gary W. Adamson, Sep 30 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 08:13 EDT 2019. Contains 327062 sequences. (Running on oeis4.)