login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Third subdiagonal of A142458: a(n) = A142458(n+3,n).
5

%I #13 Mar 16 2022 02:55:16

%S 1,166,5482,109640,1709675,23077694,284433852,3300384000,36740695125,

%T 397251942790,4206505251886,43874389439176,452588032465727,

%U 4630933106076350,47101176806668160,476947462419456864,4813761757416769257,48466731584985480870,487104579690137249650,4889039701269534580360

%N Third subdiagonal of A142458: a(n) = A142458(n+3,n).

%H G. C. Greubel, <a href="/A144380/b144380.txt">Table of n, a(n) for n = 1..990</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (40,-675,6294,-35679,127548,-289173,409062,-347112,161056,-31360).

%F G.f.: x*(1 +126*x -483*x^2 -3884*x^3 +15300*x^4 -10848*x^5 -8960*x^6)/ ( (1-10*x) *(1-7*x)^2 *(1-4*x)^3 *(1-x)^4 ). - _R. J. Mathar_, Sep 14 2013

%F a(n) = (1/162)*( 8*10^(n+3) - 30*(3*n +8)*7^(n+2) + 6*(9*n^2 +39*n +40)*4^(n+2) - (27*n^3 +135*n^2 +198*n +80)). - _G. C. Greubel_, Mar 15 2022

%t T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1,k-1,m] + (m*k - m+1)*T[n-1,k,m]];

%t A144380[n_]:= T[n+3, n, 3];

%t Table[A144380[n], {n,30}] (* modified by _G. C. Greubel_, Mar 15 2022 *)

%o (Magma) [(1/162)*( 8*10^(n+3) - 30*(3*n +8)*7^(n+2) + 6*(9*n^2 +39*n +40)*4^(n+2) - (27*n^3 +135*n^2 +198*n +80)): n in [1..30]]; // _G. C. Greubel_, Mar 15 2022

%o (Sage)

%o @CachedFunction

%o def T(n,k,m):

%o if (k==1 or k==n): return 1

%o else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)

%o def A144380(n): return T(n+3, n, 3)

%o [A144380(n) for n in (1..30)] # _G. C. Greubel_, Mar 15 2022

%Y Cf. A142458, A142976.

%K nonn

%O 1,2

%A _Roger L. Bagula_ and _Gary W. Adamson_, Oct 01 2008