Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 24 2018 18:56:57
%S 0,1,1,5,19,89,410,2052,10440,54874,293549,1597621,8807766,49107289,
%T 276358791,1567866228,8957204966,51486464912,297548288251,
%U 1727856600935,10076859047404,58996263573440,346614270372761,2042929868812385,12076076910981403
%N Shifts left when Euler transform applied 4 times.
%H Alois P. Heinz, <a href="/A144036/b144036.txt">Table of n, a(n) for n = 0..1000</a>
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%p k:=4: with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:='a': b[1]:=etr(a): for t from 2 to k do b[t]:= etr(b[t-1]) od: a:= n-> `if`(n<2,n,b[k](n-1)): seq(a(n), n=0..30);
%t etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := Module[{a, b, t}, b[1] = etr[a]; For[ t = 2, t <= k, t++, b[t] = etr[b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m-1]]]; a[n]]; Table[A[n, 4], {n, 0, 30} ] (* _Jean-François Alcover_, Mar 05 2015, after _Alois P. Heinz_ *)
%Y 4th column of A144042.
%Y Cf. A316104.
%K eigen,nonn
%O 0,4
%A _Alois P. Heinz_, Sep 07 2008