login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144036
Shifts left when Euler transform applied 4 times.
3
0, 1, 1, 5, 19, 89, 410, 2052, 10440, 54874, 293549, 1597621, 8807766, 49107289, 276358791, 1567866228, 8957204966, 51486464912, 297548288251, 1727856600935, 10076859047404, 58996263573440, 346614270372761, 2042929868812385, 12076076910981403
OFFSET
0,4
LINKS
N. J. A. Sloane, Transforms
MAPLE
k:=4: with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:='a': b[1]:=etr(a): for t from 2 to k do b[t]:= etr(b[t-1]) od: a:= n-> `if`(n<2, n, b[k](n-1)): seq(a(n), n=0..30);
MATHEMATICA
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := Module[{a, b, t}, b[1] = etr[a]; For[ t = 2, t <= k, t++, b[t] = etr[b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m-1]]]; a[n]]; Table[A[n, 4], {n, 0, 30} ] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
CROSSREFS
4th column of A144042.
Cf. A316104.
Sequence in context: A340994 A301702 A296162 * A110210 A244899 A147139
KEYWORD
eigen,nonn
AUTHOR
Alois P. Heinz, Sep 07 2008
STATUS
approved