login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143954
Number of peaks in the peak plateaux of all Dyck paths of semilength n.
2
0, 0, 1, 5, 19, 68, 243, 880, 3233, 12021, 45119, 170595, 648787, 2479057, 9509627, 36598497, 141246127, 546433952, 2118424887, 8227983472, 32010173957, 124715628852, 486550020967, 1900433894942, 7431033132717, 29085434212042
OFFSET
0,4
COMMENTS
A peak plateau is a run of consecutive peaks that is preceded by an upstep and followed by a down step; a peak consists of an upstep followed by a downstep.
LINKS
FORMULA
a(n) = Sum_{k=0..n-1} k*A143953(n,k).
G.f.: z^2*C/[(1-z)^2*sqrt(1-4z)], where C = [1-sqrt(1-4z)]/(2z) is the Catalan function.
a(n) ~ 2^(2*n+1)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
a(n) = Sum_{k=1..n-1} A079309(k). - Doug Bell, Jun 23 2015
Conjecture: (-n+1)*a(n) +2*(3*n-4)*a(n-1) +(-9*n+13)*a(n-2) +2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jun 16 2016
EXAMPLE
a(3)=5 because in the peak plateaux of the Dyck paths UDUDUD, UD(UUDD), (UUDD)UD, (UUDUDD) and U(UUDD)D, shown between parentheses, we have 0 + 1 + 1 + 2 + 1 = 5 peaks.
MAPLE
C:=((1-sqrt(1-4*z))*1/2)/z: G:=z^2*C/((1-z)^2*sqrt(1-4*z)): Gser:=series(G, z= 0, 30): seq(coeff(Gser, z, n), n=0..25);
MATHEMATICA
CoefficientList[Series[x^2*((1-Sqrt[1-4*x])*1/2)/x/((1-x)^2*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0], Vec(x*(1-sqrt(1-4*x))/(2*(1-x)^2*sqrt(1-4*x)))) \\ G. C. Greubel, Mar 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 10 2008
STATUS
approved