login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143900
Number of simple graphs on n labeled nodes containing at least one cycle subgraph, also row sums of A143899.
2
0, 0, 0, 1, 26, 733, 29836, 2060191, 267873508, 68709450231, 35184166480296, 36028792251523289, 73786976171465003256, 302231454900131663566437, 2475880078570650265515241808, 40564819207303337099536803011071, 1329227995784915872766249150185503728
OFFSET
0,5
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..82 (first 51 terms from Alois P. Heinz)
FORMULA
a(n) = A006125(n) - A001858(n).
a(n) = Sum_{k=3..C(n,2)} A143899(n,k).
EXAMPLE
a(3) = 1, because 1 simple graph on 3 nodes with 3 edges contains a cycle subgraph:
..1-2..
..|/...
..3....
MAPLE
graphs:= n-> 2^binomial(n, 2): forests:= n-> add(add(binomial(m, j) *binomial(n-1, n-m-j) *n^(n-m-j) *(m+j)!/ (-2)^j/ m!, j=0..m), m=0..n): a:= n-> graphs(n) -forests(n): seq(a(n), n=0..18);
MATHEMATICA
graphs[n_] := 2^Binomial[n, 2]; forests[n_] := Sum[Binomial[m, j]* Binomial[n-1, n-m-j]*n^(n-m-j)*(m+j)!/(-2)^j/m!, {m, 0, n}, {j, 0, m}]; a[0] = 0; a[n_] := graphs[n] - forests[n]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)
CROSSREFS
Row sums of A143899.
Sequence in context: A181227 A094738 A182612 * A282790 A180792 A091742
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 04 2008
STATUS
approved