OFFSET
0,5
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..82 (first 51 terms from Alois P. Heinz)
EXAMPLE
a(3) = 1, because 1 simple graph on 3 nodes with 3 edges contains a cycle subgraph:
..1-2..
..|/...
..3....
MAPLE
graphs:= n-> 2^binomial(n, 2): forests:= n-> add(add(binomial(m, j) *binomial(n-1, n-m-j) *n^(n-m-j) *(m+j)!/ (-2)^j/ m!, j=0..m), m=0..n): a:= n-> graphs(n) -forests(n): seq(a(n), n=0..18);
MATHEMATICA
graphs[n_] := 2^Binomial[n, 2]; forests[n_] := Sum[Binomial[m, j]* Binomial[n-1, n-m-j]*n^(n-m-j)*(m+j)!/(-2)^j/m!, {m, 0, n}, {j, 0, m}]; a[0] = 0; a[n_] := graphs[n] - forests[n]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 04 2008
STATUS
approved