login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A143894
Expansion of (chi(q)^5 * chi(-q))^2 in powers of q where chi() is a Ramanujan theta function.
2
1, 8, 26, 48, 79, 168, 326, 496, 755, 1296, 2106, 3072, 4460, 6840, 10284, 14448, 20165, 29184, 41640, 56880, 77352, 107472, 147902, 197616, 263019, 354888, 475516, 624048, 816065, 1076736, 1413142, 1826416, 2353446, 3050400, 3936754, 5022720
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/2) * (eta(q^2)^9 / (eta(q)^4 * eta(q^4)^5))^2 in powers of q.
Euler transform of period 4 sequence [ 8, -10, 8, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143895.
G.f.: (Product_{k>0} (1 + x^k)^4 / (1 + x^(2*k))^5)^2.
a(2*n) = A052241(n). a(2*n + 1) = 8 * A022571(n).
a(n) ~ exp(sqrt(n)*Pi) / (sqrt(2) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
EXAMPLE
G.f. = 1 + 8*x + 26*x^2 + 48*x^3 + 79*x^4 + 168*x^5 + 326*x^6 + 496*x^7 + ...
G.f. = 1/q + 8*q + 26*q^3 + 48*q^5 + 79*q^7 + 168*q^9 + 326*q^11 + 496*q^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^9 / (QPochhammer[ x]^4 QPochhammer[ x^4]^5))^2, {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax = 40; CoefficientList[Series[Product[((1 + x^k)^4 / (1 + x^(2*k))^5)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^9 / (eta(x + A)^4 * eta(x^4 + A)^5))^2, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 04 2008
STATUS
approved