login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A143121
Triangle read by rows, T(n,k) = Sum_{j=k..n} prime(j), 1 <= k <= n.
4
2, 5, 3, 10, 8, 5, 17, 15, 12, 7, 28, 26, 23, 18, 11, 41, 39, 36, 31, 24, 13, 58, 56, 53, 48, 41, 30, 17, 77, 75, 72, 67, 60, 49, 36, 19, 100, 98, 95, 90, 83, 72, 59, 42, 23, 129, 127, 124, 119, 112, 101, 88, 71, 52, 29, 160, 158, 155, 150, 143, 132, 119, 102, 83, 60, 31
OFFSET
1,1
COMMENTS
Left border = A007504, sum of first n primes: (2, 5, 10, 27, 28, 41, ...).
Right border = primes = A000040.
Row sums = A014285: (2, 8, 23, 51, 106, 184, ...).
FORMULA
T(n,k) = Sum_{j=k..n} prime(j), 1 <= k <= n, primes = A000040.
Equals A000012 * (A000040 * 0^(n-k)) * A000012.
EXAMPLE
First few rows of the triangle are:
2;
5, 3;
10, 8, 5;
17, 15, 12, 7;
28, 26, 23, 18, 11;
41, 39, 36, 31, 24, 13;
58, 56, 53, 48, 41, 30, 17;
...
T(5,3) = 23 = prime(3) + prime(4) + prime(5) = (5 + 7 + 11).
MAPLE
a:=proc(n, k) add(ithprime(j), j=k..n) end: seq(seq(a(n, k), k=1..n), n=1..11); # Muniru A Asiru, Oct 15 2018
MATHEMATICA
a[n_, k_] := a[n, k] = Plus@@Prime[Range[n - k + 1, n]]; Column[Table[a[n, k], {n, 15}, {k, n, 1, -1}], Center] (* Alonso del Arte, Jul 25 2011 *)
Table[Sum[Prime[j], {j, k, n}], {n, 1, 15}, {k, 1, n}]//Flatten (* G. C. Greubel, Oct 15 2018 *)
PROG
(PARI) a(n, k)=my(s); forprime(p=prime(k), prime(n), s+=p); s \\ Charles R Greathouse IV, Jul 25 2011
(Magma) [[(&+[NthPrime(j): j in [k..n]]): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 15 2018
CROSSREFS
Cf. A194939 (rows reversed).
Sequence in context: A078386 A163254 A277696 * A101492 A297442 A277709
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
Corrected by Hanke Bremer, Nov 28 2008
STATUS
approved