login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143014
a(1) = 1. a(n) = the smallest multiple of a(n-1), a(n) > a(n-1), such that a(n) in binary is a palindrome.
3
1, 3, 9, 27, 189, 2457, 12285, 159705, 9103185, 2030010255, 11000625571845, 187010634721365, 45069562967848965, 188943190838905598464005, 3169167002067055110614170009605, 53875839035139936880440890163285
OFFSET
1,2
COMMENTS
All terms are odd.
There are an infinite number of terms. Proof: (2^m + 1)*a(n) is a palindrome, where m is >= the number of binary digits in a(n). So a(n+1) <= (2^m + 1)*a(n).
MAPLE
isA006995 := proc(n) local dgs, i ; dgs := convert(n, base, 2) ; for i from 1 to nops(dgs)/2 do if op(i, dgs) <> op(-i, dgs) then RETURN(false) ; fi; od: RETURN(true) ; end: A143014 := proc(n) option remember ; local m, a ; if n = 1 then 1; else for m from 2 do a := m*A143014(n-1) ; if isA006995(a) then RETURN(a) ; fi; od: fi ; end: for n from 1 to 100 do printf("%d, ", A143014(n)) ; od: # R. J. Mathar, Aug 08 2008
MATHEMATICA
Fold[Function[{a, n}, Append[a, SelectFirst[Range[2^(n + 2)] Last[a], And[# > Last[a], PalindromeQ[IntegerDigits[#, 2]]] &]]] @@ {#1, #2} &, {1}, Range[2, 13]] (* Michael De Vlieger, Oct 25 2017 *)
PROG
(PARI) isok(ka) = my(b=binary(ka)); b==Vecrev(b);
lista(nn) = {print1(a=1, ", "); for (n=2, nn, k=2; while (! isok(k*a), k++); a *= k; print1(k, ", "); ); } \\ Michel Marcus, Oct 26 2017
CROSSREFS
Cf. A006995. - R. J. Mathar, Aug 08 2008
Sequence in context: A375093 A028855 A299597 * A202907 A032261 A300981
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Jul 15 2008
EXTENSIONS
a(6)-a(13) added by R. J. Mathar, Aug 08 2008
a(14)-a(16) from Ray Chandler, Jun 21 2009
STATUS
approved