OFFSET
1,2
COMMENTS
All terms are odd.
There are an infinite number of terms. Proof: (2^m + 1)*a(n) is a palindrome, where m is >= the number of binary digits in a(n). So a(n+1) <= (2^m + 1)*a(n).
MAPLE
isA006995 := proc(n) local dgs, i ; dgs := convert(n, base, 2) ; for i from 1 to nops(dgs)/2 do if op(i, dgs) <> op(-i, dgs) then RETURN(false) ; fi; od: RETURN(true) ; end: A143014 := proc(n) option remember ; local m, a ; if n = 1 then 1; else for m from 2 do a := m*A143014(n-1) ; if isA006995(a) then RETURN(a) ; fi; od: fi ; end: for n from 1 to 100 do printf("%d, ", A143014(n)) ; od: # R. J. Mathar, Aug 08 2008
MATHEMATICA
Fold[Function[{a, n}, Append[a, SelectFirst[Range[2^(n + 2)] Last[a], And[# > Last[a], PalindromeQ[IntegerDigits[#, 2]]] &]]] @@ {#1, #2} &, {1}, Range[2, 13]] (* Michael De Vlieger, Oct 25 2017 *)
PROG
(PARI) isok(ka) = my(b=binary(ka)); b==Vecrev(b);
lista(nn) = {print1(a=1, ", "); for (n=2, nn, k=2; while (! isok(k*a), k++); a *= k; print1(k, ", "); ); } \\ Michel Marcus, Oct 26 2017
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Jul 15 2008
EXTENSIONS
a(6)-a(13) added by R. J. Mathar, Aug 08 2008
a(14)-a(16) from Ray Chandler, Jun 21 2009
STATUS
approved