login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = binomial(n, k) * Sum_{j=k..n} StirlingS1(n, j)*StirlingS1(j, k), read by rows.
1

%I #10 Apr 03 2021 03:08:17

%S 1,-4,1,21,-18,1,-140,240,-48,1,1140,-3150,1300,-100,1,-11004,43620,

%T -29700,4800,-180,1,123074,-650769,647780,-175175,13965,-294,1,

%U -1566928,10517108,-14190400,5676160,-764400,34496,-448,1,22390488,-184052520,319680732,-175091112,35160048,-2698920,75600,-648,1

%N Triangle T(n, k) = binomial(n, k) * Sum_{j=k..n} StirlingS1(n, j)*StirlingS1(j, k), read by rows.

%C Row sums are: 1, -3, 4, 53, -809, 7537, -41418, -294411, 15463669, -352665269, ....

%H G. C. Greubel, <a href="/A142472/b142472.txt">Rows n = 1..50 of the triangle, flattened</a>

%F T(n, k) = binomial(n, k) * Sum_{j=k..n} StirlingS1(n, j)*StirlingS1(j, k).

%e The triangle begins as:

%e 1;

%e -4, 1;

%e 21, -18, 1;

%e -140, 240, -48, 1;

%e 1140, -3150, 1300, -100, 1;

%e -11004, 43620, -29700, 4800, -180, 1;

%e 123074, -650769, 647780, -175175, 13965, -294, 1;

%e -1566928, 10517108, -14190400, 5676160, -764400, 34496, -448, 1;

%e 22390488, -184052520, 319680732, -175091112, 35160048, -2698920, 75600, -648, 1;

%p A142472:= (n,k)-> binomial(n,k)*add(Stirling1(n,j)*Stirling1(j,k), j=k..n);

%p seq(seq(A142472(n,k), k=1..n), n=1..12); # _G. C. Greubel_, Apr 02 2021

%t T[n_, k_]:= Binomial[n, k]*Sum[StirlingS1[n, j]*StirlingS1[j, k], {j, k, n}];

%t Table[T[n, k], {n,12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Apr 02 2021 *)

%o (Magma)

%o A142472:= func< n,k | Binomial(n,k)*(&+[StirlingFirst(n,j)*StirlingFirst(j,k): j in [k..n]]) >;

%o [A142472(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 02 2021

%o (Sage)

%o def A142472(n,k): return (-1)^(n-k)*binomial(n,k)*sum( stirling_number1(n, j)*stirling_number1(j, k) for j in (k..n) )

%o flatten([[A142472(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Apr 02 2021

%Y Cf. A008275, A039814.

%K sign,tabl

%O 1,2

%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 22 2008

%E Edited by _N. J. A. Sloane_, Sep 26 2008