The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141666 A symmetrical triangle of coefficients based on A004018 (or number of ways of writing n as a sum of 2 squares): t(n,m) = r2(n-m+1)*r2(m+1). 1
 1, 4, 4, 4, 16, 4, 0, 16, 16, 0, 4, 0, 16, 0, 4, 8, 16, 0, 0, 16, 8, 0, 32, 16, 0, 16, 32, 0, 0, 0, 32, 0, 0, 32, 0, 0, 4, 0, 0, 0, 16, 0, 0, 0, 4, 4, 16, 0, 0, 32, 32, 0, 0, 16, 4, 8, 16, 16, 0, 0, 64, 0, 0, 16, 16, 8 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums are {1, 8, 24, 32, 24, 48, 96, 64, 24, 104, 144}. REFERENCES G. E. Andrews, Number Theory, 1971, Dover Publications New York, p. 44, p. 201-207. LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened Eric Weisstein's World of Mathematics, Sum of Squares Function FORMULA t(n,m) = r2(n-m+1)*r2(m+1). EXAMPLE Triangle begins   {1},   {4,  4},   {4, 16,  4},   {0, 16, 16,  0},   {4,  0, 16,  0,  4},   {8, 16,  0,  0, 16,  8},   {0, 32, 16,  0, 16, 32,  0},   {0,  0, 32,  0,  0, 32,  0,  0},   {4,  0,  0,  0, 16,  0,  0,  0,  4},   {4, 16,  0,  0, 32, 32,  0,  0, 16,  4},   {8, 16, 16,  0,  0, 64,  0,  0, 16, 16,  8} MATHEMATICA Clear[a]; a = CoefficientList[Series[1 + 4*Sum[(-1)^(1 + n)/(-1 + x^(1 - 2*n)), {n, 100}], {x, 0, 100}], x]; Table[Table[a[[n - m + 1]]*a[[m + 1]], {m, 0, n}], {n, 0, 10}]//Flatten CROSSREFS Cf. A004018. Sequence in context: A245517 A179526 A098525 * A102127 A201625 A223824 Adjacent sequences:  A141663 A141664 A141665 * A141667 A141668 A141669 KEYWORD nonn,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Sep 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 14:14 EDT 2020. Contains 337291 sequences. (Running on oeis4.)