Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Nov 07 2023 19:46:50
%S 1,2,1,3,1,1,4,12,2,1,5,6,4,1,1,6,180,8,6,2,1,7,10,15,2,6,1,1,8,560,
%T 240,240,6,4,2,1,9,1260,15120,20,144,1,12,1,1,10,12600,672,945,32,240,
%U 8,3,2,1,11,1260,8400,1512,3024,48,240,3,1,1,1,12,166320,100800,64800,12096,12096,480,360,4,12,2,1
%N Triangle c(n,k) of the denominators of coefficients [x^k] P(n,x) of the polynomials P(n,x) of A129891.
%C Polynomials are characteristic polynomials of a particular John Couch Adams matrix.
%C General term: ( (-1)^(n-j)*C(j, n)*n! ) * Integral_{0..i} (u*(u-1)*(u-2)* ... *(u-n))/(u-j)) du, with 1 <= i,j <= n (see Flajolet et al.).
%C Denominators are 1, 2, 12, 24, 720 = A091137.
%C These polynomials come from the explicit case. The less interesting implicit case has the same denominators (see P. Curtz reference).
%D Paul Curtz, Intégration .. note 12, C.C.S.A., Arcueil 1969, p. 61; ibid. pp. 62-65.
%D P. Flajolet, X. Gourdon, and B. Salvy, Sur une famille de polynômes issus de l'analyse numérique, Gazette des Mathématiciens, 1993, 55, pp. 67-78.
%H G. C. Greubel, <a href="/A141412/b141412.txt">Rows n = 0..50 of the triangle, flattened</a>
%H Bakir Farhi, <a href="https://arxiv.org/abs/1810.07560">On the derivatives of the integer-valued polynomials</a>, arXiv:1810.07560 [math.NT], 2018.
%F Conjecture: T(n, k) = d(n+1, k+1), with d(n,k) = denominator(A000254(n, k)*k!/n!) where A000254 are the unsigned Stirling numbers of the 1st kind. See d(n,k) in Farhi link. - _Michel Marcus_, Oct 18 2018
%F Equals denominators of A048594(n+1, k+1)/(n+1)!. - _G. C. Greubel_, Oct 24 2023
%e Triangle begins:
%e 1;
%e 2, 1;
%e 3, 1, 1;
%e 4, 12, 2, 1;
%e 5, 6, 4, 1, 1;
%e 6, 180, 8, 6, 2, 1;
%e 7, 10, 15, 2, 6, 1, 1;
%e ...
%p P := proc(n,x) option remember ; if n =0 then 1; else (-1)^n/(n+1)+x*add( (-1)^i/(i+1)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end:
%p A141412 := proc(n,k) p := P(n,x) ; denom(coeftayl(p,x=0,k)) ; end: seq(seq(A141412(n,k),k=0..n),n=0..13) ; # _R. J. Mathar_, Aug 24 2009
%t p[0]=1; p[n_]:= p[n]= (-1)^n/(n+1) +x*Sum[(-1)^k*p[n-1-k]/(k+1), {k, 0, n-1}];
%t Denominator[Flatten[Table[CoefficientList[p[n], x], {n,0,11}]]][[1 ;; 72]] (* _Jean-François Alcover_, Jun 17 2011 *)
%t Table[Denominator[(k+1)!*StirlingS1[n+1,k+1]/(n+1)!], {n,0,12}, {k,0, n}]//Flatten (* _G. C. Greubel_, Oct 24 2023 *)
%o (Magma) [Denominator(Factorial(k)*StirlingFirst(n, k)/Factorial(n)): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Oct 24 2023
%o (SageMath)
%o def A141412(n,k): return denominator(factorial(k+1)* stirling_number1(n+1,k+1)/factorial(n+1))
%o flatten([[A141412(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Oct 24 2023
%Y Cf. A000254, A048594, A129891, A140749 (numerators).
%K nonn,frac,tabl
%O 0,2
%A _Paul Curtz_, Aug 04 2008
%E Partially edited by _R. J. Mathar_, Aug 24 2009