login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141353
a(n) = Catalan(n) + 2^n - 0^n.
2
1, 3, 6, 13, 30, 74, 196, 557, 1686, 5374, 17820, 60834, 212108, 751092, 2690824, 9727613, 35423206, 129775862, 477900844, 1767787478, 6565168996, 24468364172, 91486757944, 343068002258, 1289920924540, 4861979955884
OFFSET
0,2
COMMENTS
Hankel transform is A141354.
FORMULA
G.f.: c(x)+2x/(1-2x), where c(x) is the g.f. of A000108. [corrected by Paul Barry, Oct 18 2010]
Conjecture: (n+1)*a(n) + 2*(-4*n+1)*a(n-1) + 4*(5*n-7)*a(n-2) + 8*(-2*n+5)*a(n-3) = 0. - R. J. Mathar, Nov 15 2012
MATHEMATICA
f[n_] := Binomial[2n, n]/(n + 1) + 2^n - 0^n; f[0] = 1; Array[f, 29, 0] (* or *)
CoefficientList[ Series[1 + 1/2 (-4 + 2/(1 - 2x) + (1 - Sqrt[1 - 4x])/x), {x, 0, 28}], x] (* Robert G. Wilson v, Mar 18 2018 *)
PROG
(PARI) a(n) = binomial(2*n, n)/(n+1) + 2^n - 0^n; \\ Michel Marcus, Mar 18 2018
CROSSREFS
Cf. A000108 (Catalan numbers), A141351.
Sequence in context: A137584 A201631 A125267 * A130582 A126296 A293911
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 27 2008
STATUS
approved