

A141281


Primes p such that p6^4, p6^3, p6^2, p6, p, p+6, p+6^2, p+6^3 and p+6^4 are primes.


4



11459317, 18726137, 73718633, 181975727, 361471043, 374195537, 419533753, 420522673, 428739323, 429198703, 456975157, 483576523, 544795393, 653578573, 682118777, 703313623, 753422317, 764967257, 797492477, 960985037, 1059913073
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Subsequence of A006489, A141279 and A141280. Each term is congruent to 1 or 10 mod 11 so for no prime p can this pattern be extended also to include primes p6^5 and p+6^5 (one of them is divisible by 11). See A070392 for residues mod 11 of powers of 6. As each term of A006489 greater than 11 is congruent to 3 or 7 mod 10, combining results gives that a(n) is congruent to 23, 43, 67, or 87 mod 110.


LINKS

Rick L. Shepherd, Table of n, a(n) for n = 1..55


MATHEMATICA

Select[Prime[Range[53734400]], AllTrue[#+{1296, 216, 36, 6, 6, 36, 216, 1296}, PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 01 2021 *)


CROSSREFS

Cf. A006489, A141279, A141280, A141282, A070392.
Sequence in context: A323331 A072142 A043674 * A028241 A248166 A234070
Adjacent sequences: A141278 A141279 A141280 * A141282 A141283 A141284


KEYWORD

nonn


AUTHOR

Rick L. Shepherd, Jun 22 2008


STATUS

approved



