login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A137576((N-1)/2) - N, where N = A001567(n).
3

%I #23 Jun 28 2019 14:40:33

%S 30,320,224,240,72,360,728,0,672,216,1320,0,0,16,5060,60,126,10560,

%T 216,0,3360,2574,150,5040,2808,3600,3600,232,400,420,22,2700,2784,224,

%U 96,70,1640,240,9200,3600,2760,58344,616,504,102,5600,8064,264,11880,1440,7488,252

%N a(n) = A137576((N-1)/2) - N, where N = A001567(n).

%C The zero terms are of a special interest. Indeed, since for any odd prime p, A137576((p-1)/2)=p, then it is natural to call "overpseudoprimes" those Poulet pseudoprimes A001567(n) for which a(n)=0.

%C Theorem. A squarefree composite number m = p_1*p_2*...*p_k is an overpseudoprime if and only if A002326((p_1-1)/2) = A002326((p_2-1)/2) = ... = A002326((p_k-1)/2). Moreover, every overpseudoprime is in A001262.

%C Note that in A001262 there exist terms which are not squarefree. The first is A001262(52) = 1194649 = 1093^2.

%C It can be shown that if an overpseudoprime is not a multiple of the square of a Wieferich prime (see A001220) then it is squarefree. Also all squares of Wieferich primes are overpseudoprimes.

%H Amiram Eldar, <a href="/A141216/b141216.txt">Table of n, a(n) for n = 1..10000</a>

%H V. Shevelev, <a href="http://arxiv.org/abs/0806.3412">Overpseudoprimes, Mersenne Numbers and Wieferich Primes</a>, arxiv:0806.3412 [math.NT], 2008-2012.

%t fppQ[n_]:=PowerMod[2,n,n]==2;f[n_] := (t = MultiplicativeOrder[2, 2n+1])*DivisorSum[2n+1, EulerPhi[#] / MultiplicativeOrder[2, #]&]-t+1; s={}; Do[If[fppQ[n] && CompositeQ[n],AppendTo[s,f[(n-1)/2 ]-n]],{n,1,10000}]; s (* _Amiram Eldar_, Dec 09 2018 after _Jean-François Alcover_ at A137576 *)

%o (PARI) f(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576

%o isfpp(n) = {Mod(2, n)^n==2 & !isprime(n) & n>1}; \\ A001567

%o lista(nn) = {for (n=1, nn, if (isfpp(n), print1(f((n-1)/2) - n, ", ");););} \\ _Michel Marcus_, Dec 09 2018

%Y Cf. A137576, A001567, A001262, A002326, A006694.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, Jun 14 2008, Jul 13 2008

%E More terms via b137576.txt from _R. J. Mathar_, Jun 12 2010

%E More terms from _Michel Marcus_, Dec 09 2018