Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 30 2012 18:37:10
%S 3,7,12,16,19,25,28,32,36,41,44,48,54,57,63,66,70,73,77,83,86,92,95,
%T 98,104,108,111,116,120,124,127,133,137,142,146,149,154,158,162,165,
%U 168,174,178,184,187,190,194,197,203,207,212,216,219,225,228,234,238,241
%N Let sequences X and Y consist of the least positive integers such that 2X+Y is the complement of X and X+Y is the complement of Y, starting with X(1)=1 and Y(1)=1; then this sequence equals 2X+Y, while X=A141204, Y=A141206 and X+Y=A141207.
%C Complement of A141204.
%H Paul D Hanna, <a href="/A141205/b141205.txt">Table of n, a(n) for n = 1..420</a>
%F CONJECTURES on evaluating limits.
%F The following limits exist for some irrational q and r:
%F Limit X(n)/n = 1 + q, Limit {2X+Y}(n)/n = 1 + 1/q and
%F Limit Y(n)/n = 1 + r, Limit {X+Y}(n)/n = 1 + 1/r.
%F Thus q and r can be defined by:
%F Limit X(n)/{2X+Y}(n) = q = (1 + q)/(3 + 2*q + r) and
%F Limit Y(n)/{X+Y}(n) = r = (1 + r)/(2 + r + q).
%F Therefore q = least positive real root that satisfies:
%F 1 - 4*q + 2*q^2 + 2*q^3 = 0, giving q = 0.31544880690757230308868993...
%F Also, r = least positive real root that satisfies:
%F 2 - 4*r + r^3 = 0, giving r = 0.5391888728108891165258759...
%e Union of X and 2X+Y = positive integers:
%e X=[1,2,4,5,6,8,9,10,11,13,14,15,17,18,20,21,22,23,24,...];
%e 2X+Y=[3,7,12,16,19,25,28,32,36,41,44,48,54,57,63,66,70,...].
%e Limit X(n)/{2X+Y}(n) = 0.3154488069...
%e Union of Y and X+Y = positive integers:
%e Y=[1,3,4,6,7,9,10,12,14,15,16,18,20,21,23,24,26,27,29,...];
%e X+Y=[2,5,8,11,13,17,19,22,25,28,30,33,37,39,43,45,48,50,...].
%e Limit Y(n)/{X+Y}(n) = 0.5391888728...
%o (PARI) /* Print a(n), n=1..100: */ {A=[1]; B=[3]; C=[1]; D=[2]; print1(B[1]","); for(n=1, 100, for(j=2, 4*n, if(setsearch(Set(concat(A, B)), j)==0, At=concat(A, j); for(k=2*j+1, 6*n, if(setsearch(Set(concat(At, B)), k)==0, if(setsearch(Set(concat(C, D)), k-2*j)==0, if(setsearch(Set(concat(C, D)), k-j)==0, A=At; B=concat(B, k); C=concat(C, k-2*j); D=concat(D, k-j); print1(B[ #B]","); break); break))))))}
%Y Cf. A141204 (X), A141206 (Y), A141207 (X+Y).
%K nonn
%O 1,1
%A _Paul D. Hanna_, Jun 21 2008