login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141205
Let sequences X and Y consist of the least positive integers such that 2X+Y is the complement of X and X+Y is the complement of Y, starting with X(1)=1 and Y(1)=1; then this sequence equals 2X+Y, while X=A141204, Y=A141206 and X+Y=A141207.
4
3, 7, 12, 16, 19, 25, 28, 32, 36, 41, 44, 48, 54, 57, 63, 66, 70, 73, 77, 83, 86, 92, 95, 98, 104, 108, 111, 116, 120, 124, 127, 133, 137, 142, 146, 149, 154, 158, 162, 165, 168, 174, 178, 184, 187, 190, 194, 197, 203, 207, 212, 216, 219, 225, 228, 234, 238, 241
OFFSET
1,1
COMMENTS
Complement of A141204.
LINKS
FORMULA
CONJECTURES on evaluating limits.
The following limits exist for some irrational q and r:
Limit X(n)/n = 1 + q, Limit {2X+Y}(n)/n = 1 + 1/q and
Limit Y(n)/n = 1 + r, Limit {X+Y}(n)/n = 1 + 1/r.
Thus q and r can be defined by:
Limit X(n)/{2X+Y}(n) = q = (1 + q)/(3 + 2*q + r) and
Limit Y(n)/{X+Y}(n) = r = (1 + r)/(2 + r + q).
Therefore q = least positive real root that satisfies:
1 - 4*q + 2*q^2 + 2*q^3 = 0, giving q = 0.31544880690757230308868993...
Also, r = least positive real root that satisfies:
2 - 4*r + r^3 = 0, giving r = 0.5391888728108891165258759...
EXAMPLE
Union of X and 2X+Y = positive integers:
X=[1,2,4,5,6,8,9,10,11,13,14,15,17,18,20,21,22,23,24,...];
2X+Y=[3,7,12,16,19,25,28,32,36,41,44,48,54,57,63,66,70,...].
Limit X(n)/{2X+Y}(n) = 0.3154488069...
Union of Y and X+Y = positive integers:
Y=[1,3,4,6,7,9,10,12,14,15,16,18,20,21,23,24,26,27,29,...];
X+Y=[2,5,8,11,13,17,19,22,25,28,30,33,37,39,43,45,48,50,...].
Limit Y(n)/{X+Y}(n) = 0.5391888728...
PROG
(PARI) /* Print a(n), n=1..100: */ {A=[1]; B=[3]; C=[1]; D=[2]; print1(B[1]", "); for(n=1, 100, for(j=2, 4*n, if(setsearch(Set(concat(A, B)), j)==0, At=concat(A, j); for(k=2*j+1, 6*n, if(setsearch(Set(concat(At, B)), k)==0, if(setsearch(Set(concat(C, D)), k-2*j)==0, if(setsearch(Set(concat(C, D)), k-j)==0, A=At; B=concat(B, k); C=concat(C, k-2*j); D=concat(D, k-j); print1(B[ #B]", "); break); break))))))}
CROSSREFS
Cf. A141204 (X), A141206 (Y), A141207 (X+Y).
Sequence in context: A061559 A165990 A160998 * A310237 A336705 A310238
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 21 2008
STATUS
approved