login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140948
a(0) = 3; for n >= 1, if a(n-1) = 2*k, then a(n) = k, otherwise 1 + (A065091(n)*a(n-1)), where A065091(n) gives the n-th odd prime.
1
3, 10, 5, 36, 18, 9, 154, 77, 1772, 886, 443, 16392, 8196, 4098, 2049, 108598, 54299, 3312240, 1656120, 828060, 414030, 207015, 17182246, 8591123, 833338932, 416669466, 208334733, 22291816432, 11145908216, 5572954108, 2786477054, 1393238527, 190873678200, 95436839100, 47718419550, 23859209775
OFFSET
0,1
COMMENTS
The original name of the sequence: P-adic Hailstone (or A033478): instead of 3, Prime[n] is used: a(n)=If[Mod[a(n - 1), 2] == 0, a(n - 1)/2, Prime(n + 1)*a(n - 1) + 1].
REFERENCES
C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 203-204.
LINKS
FORMULA
a(n) = If[Mod[a(n - 1), 2] == 0, a(n - 1)/2, Prime(n + 1)*a(n - 1) + 1].
a(0) = 3; for n >= 1, if a(n-1) = 2*k, then a(n) = k, otherwise 1 + (A065091(n)*a(n-1)). - Antti Karttunen, Jan 29 2016 after the Mathematica-code above and the original name of the sequence.
MATHEMATICA
a[0] = 3; a[n_] := a[n] = If[Mod[a[n - 1], 2] == 0, a[n - 1]/2, Prime[n + 1]*a[n - 1] + 1]; Table[a[n], {n, 0, 30}]
PROG
(Scheme, with memoization-macro definec)
(definec (A140948 n) (cond ((zero? n) 3) ((even? (A140948 (- n 1))) (/ (A140948 (- n 1)) 2)) (else (+ 1 (* (A065091 n) (A140948 (- n 1)))))))
;; Antti Karttunen, Jan 29 2016
CROSSREFS
Sequence in context: A285576 A246777 A111127 * A328763 A281174 A281220
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset corrected, name changed and more terms added by Antti Karttunen, Jan 29 2016
STATUS
approved