login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140712
Number of white corners in all permutations of {1,2,...,n} (for definition see the Eriksson-Linusson references).
3
0, 1, 6, 37, 256, 2000, 17520, 170520, 1827840, 21409920, 272160000, 3732220800, 54925516800, 863480217600, 14442536908800, 256086230400000, 4798293147648000, 94731418349568000, 1965528727658496000
OFFSET
1,3
REFERENCES
K. Eriksson and S. Linusson. Combinatorics of Fulton's essential set. Duke Mathematical Journal 85(1):61-76, 1996.
LINKS
K. Eriksson and S. Linusson, The size of Fulton's essential set, Electronic J. Combinatorics, Vol. 2, #R6, 1995.
K. Eriksson and S. Linusson, Combinatorics of Fulton's essential set, ResearchGate, 1998.
FORMULA
a(n) = Sum_{k=0..n-1} k*A140711(n,k).
a(n) = (n-1)!*(binomial(n-1,3)+6*binomial(n,2))/6 = (n-1)!*(n-1)*(n^2+13*n+6)/36.
E.g.f.: (x*(6 + 3*x - 7*x^2) + (6 - 18*x + 18*x^2 - 6*x^3)*log(1-x))/(36* (1-x)^3). - G. C. Greubel, Nov 28 2018
D-finite with recurrence 2*(-n+5)*a(n) +(2*n^2-31*n+51)*a(n-1) +(25*n-14)*(n-2)*a(n-2)=0. - R. J. Mathar, Jul 26 2022
MAPLE
seq((1/36)*(n-1)*factorial(n-1)*(n^2+13*n+6), n=1..20);
MATHEMATICA
Table[(n-1)!*(n-1)*(n^2 +13*n+6)/36, {n, 1, 20}] (* G. C. Greubel, Nov 28 2018 *)
PROG
(PARI) a(n)=(n^2+13*n+6)*(n-1)*(n-1)!/36 \\ Charles R Greathouse IV, Oct 31 2011
(Magma) [Factorial(n-1)*(n-1)*(n^2+13*n+6)/36: n in [1..20]]; // G. C. Greubel, Nov 28 2018
(Sage) [factorial(n-1)*(n-1)*(n^2 +13*n+6)/36 for n in (1..20)] # G. C. Greubel, Nov 28 2018
(GAP) List([1..30], n -> Factorial(n-1)*(n-1)*(n^2 +13*n+6)/36); # G. C. Greubel, Nov 28 2018
CROSSREFS
Sequence in context: A355957 A073013 A192238 * A362094 A079751 A088312
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 28 2008
STATUS
approved