login
A140579
Triangle read by rows, A014963(n) * 0^(n-k); 1<=k<=n.
7
1, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13
OFFSET
1,3
COMMENTS
A140579 * [1, 2, 3,...] = A140580.
(A140579)^(-1) * [1, 2, 3,...] = A048671: (1, 1, 1, 2, 1, 6, 1, 4, 3, 10,...).
A008683 = A140579^(-1) * A140664. - Gary W. Adamson, May 20 2008
FORMULA
Triangle read by rows, A014963(n) * 0^(n-k); 1<=k<=n.
Infinite lower triangular matrix with A014963 (1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11,...) in the main diagonal and the rest zeros.
EXAMPLE
First few rows of the triangle are:
1;
0, 2;
0, 0, 3;
0, 0, 0, 2;
0, 0, 0, 0, 5;
0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 7;
...
MATHEMATICA
Table[If[k != n , 0, Exp[MangoldtLambda[n]]], {n, 1, 12}, {k, 1, n}]//Flatten (* G. C. Greubel, Feb 16 2019 *)
PROG
(PARI) {T(n, k) = if(n==1, 1, gcd(vector(n-1, k, binomial(n, k)))*0^(n-k))};
for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 16 2019
(Sage)
def T(n, k): return simplify(exp(add(moebius(d)*log(n/d) for d in divisors(n))))*0^(n-k)
[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Feb 16 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson and Mats Granvik, May 17 2008
STATUS
approved