login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140462
Turan's upper bound on the number of triangles of a simplicial complex of dimension two for which every minimal non-face has three vertices.
1
0, 0, 0, 1, 3, 7, 14, 23, 36, 54, 75, 102, 136, 174, 220, 275, 335, 405, 486, 573, 672, 784, 903, 1036, 1184, 1340, 1512, 1701, 1899, 2115, 2350, 2595, 2860, 3146, 3443, 3762, 4104, 4458, 4836, 5239, 5655, 6097, 6566, 7049, 7560, 8100, 8655
OFFSET
0,5
COMMENTS
Conjecture 1.2, p. 2 of Frohmader.
REFERENCES
P. Turan, Research Problem, Kozl MTA Mat. Kutato Int. 6(1961)417-423.
FORMULA
a(n) = (5/2)*(k^3) - (3/2)*(k^2) if n = 3*k; (5/2)*(k^3) + (k^2) - (1/2)*k if n = 3*k+1; (5/2)*(k^3) + (7/2)*(k^2) + k if n = 3*k+2.
Empirical g.f.: x^3*(x^3+2*x^2+x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, May 04 2013
MAPLE
A140462 := proc(n) local k: k:=floor(n/3): if(n mod 3 = 0)then return 5*(k^3)/2 - 3*(k^2)/2: elif(n mod 3 = 1)then return 5*(k^3)/2 + k^2 - k/2: else return 5*(k^3)/2 + 7*(k^2)/2 + k: fi: end:
seq(A140462(n), n=0..40); # Nathaniel Johnston, Apr 26 2011
MATHEMATICA
a[n_] := Which[k = Floor[n/3]; Mod[n, 3] == 0, 5*(k^3)/2 - 3*(k^2)/2, Mod[n, 3] == 1, 5*(k^3)/2 + k^2 - k/2, True, 5*(k^3)/2 + 7*(k^2)/2 + k];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 28 2017, from Maple *)
CROSSREFS
Sequence in context: A294400 A115285 A004232 * A227841 A225256 A093523
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jun 27 2008
STATUS
approved