The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140132 a(n)=Sum_digits{a(n-1)+a(n-2)+Sum_digits[a(n-1)]+Sum_digits[a(n-2)]}, with a(0)=0 and a(1)=1. 1
 0, 1, 2, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7, 8, 3, 4, 5, 9, 10, 11, 6, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS After the first three terms the sequence is periodic: 6,7,8,3,4,5,9,10,11. LINKS FORMULA a(n)=(1/12)*{-3*(n mod 9)+[(n+1) mod 9]+[(n+2) mod 9]+9*[(n+3) mod 9]+[(n+4) mod 9]+[(n+5) mod 9]+9*[(n+6) mod 9]+[(n+7) mod 9]+[(n+8) mod 9]}-9*{[C(2*n,n) mod 2]+[C((n+1)^2,n+3) mod 2]+[C((n+12)^4,n+14) mod 2]}, with n>=0 MAPLE P:=proc(n) local a, b, i, k, w, x, y; a:=0; b:=1; print(a); print(b); for i from 1 by 1 to n do w:=0; k:=a; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=b; while k>0 do x:=x+k-(trunc(k/10)*10); k:=trunc(k/10); od; c:=b; y:=0; k:=a+b+w+x; while k>0 do y:=y+k-(trunc(k/10)*10); k:=trunc(k/10); od; a:=b; b:=y; print(y); od; end: P(100); CROSSREFS Cf. A016052, A047892, A047897-A047900, A047902, A047903, A055263, A134268, A135210, A140131. Sequence in context: A242430 A035569 A176017 * A186504 A096909 A073005 Adjacent sequences:  A140129 A140130 A140131 * A140133 A140134 A140135 KEYWORD easy,nonn,base AUTHOR Paolo P. Lava and Giorgio Balzarotti, May 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 19:11 EDT 2021. Contains 345388 sequences. (Running on oeis4.)