login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140107
a(n) = binomial(n+3, 3)*7^n.
7
1, 28, 490, 6860, 84035, 941192, 9882516, 98825160, 951192165, 8877793540, 80787921214, 719746934452, 6297785676455, 54257845827920, 461191689537320, 3874010192113488, 32202709721943369, 265198785945415980, 2165790085220897170, 17554298585474640220
OFFSET
0,2
COMMENTS
With a different offset, number of n-permutations (n=4) of 8 objects: s, t, u, v, w, z, x, y with repetition allowed, containing exactly three u's.
uuus, uusu, usuu, suuu,
uuut, uutu, utuu, tuuu,
uuuv, uuvu, uvuu, vuuu,
uuuw, uuwu, uwuu, wuuu,
uuuz, uuzu, uzuu, zuuu,
uuux, uuxu, uxuu, xuuu,
uuuy, uuyu, uyuu, yuuu
FORMULA
From R. J. Mathar, Jun 03 2009: (Start)
a(n) = 28*a(n-1) - 294*a(n-2) + 1372*a(n-3) - 2401*a(n-4).
G.f.: 1/(7*x-1)^4. (End)
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 756*log(7/6) - 231/2.
Sum_{n>=0} (-1)^n/a(n) = 1344*log(8/7) - 357/2. (End)
MAPLE
seq(binomial(n+3, 3)*7^n, n=0..26);
MATHEMATICA
Table[Binomial[n+3, 3]7^n, {n, 0, 20}] (* or *) LinearRecurrence[{28, -294, 1372, -2401}, {1, 28, 490, 6860}, 20] (* Harvey P. Dale, Jun 21 2016 *)
PROG
(Magma) [7^n* Binomial(n+3, 3): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
(PARI) a(n)=binomial(n+3, 3)*7^n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Sequence in context: A223997 A263949 A240463 * A028170 A211677 A076172
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Jun 03 2008
STATUS
approved