login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140099
A Beatty sequence: a(n) = [n*(1+t)], where t = tribonacci constant (A058265); complement of A140098.
12
2, 5, 8, 11, 14, 17, 19, 22, 25, 28, 31, 34, 36, 39, 42, 45, 48, 51, 53, 56, 59, 62, 65, 68, 70, 73, 76, 79, 82, 85, 88, 90, 93, 96, 99, 102, 105, 107, 110, 113, 116, 119, 122, 124, 127, 130, 133, 136, 139, 141, 144, 147, 150, 153, 156, 159, 161, 164, 167, 170, 173
OFFSET
1,1
COMMENTS
Note that A276385 agrees with this sequence for n <= 17160 but disagrees beyond that point. In fact a(17161) = 48725, whereas A276385(17161) = 48724. - N. J. A. Sloane, Sep 03 2016
Also somewhat similar to but different from A109232. - N. J. A. Sloane, Sep 04 2016
LINKS
Harvey P. Dale and N. J. A. Sloane, Table of n, a(n) for n = 1..20000, Aug 29 2016 (First 1000 terms from Harvey P. Dale)
FORMULA
For n >= 1, a(n) = A158919(n)+n. - N. J. A. Sloane, Sep 04 2016
EXAMPLE
Tribonacci constant: t = 1.839286755214161132551852564653286600...
MATHEMATICA
With[{tc=1/3 (1+Surd[19-3Sqrt[33], 3])+1/3 Surd[19+3Sqrt[33], 3]}, Array[ Floor[ (1+tc)*#]&, 70]] (* Harvey P. Dale, Dec 05 2013 *)
PROG
(PARI) {a(n)=local(t=(1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3); floor(n*(1+t))}
CROSSREFS
Cf. A140098 (complement), A140101, A058265, A109232, A276385.
See also A158919 (Beatty sequence for tribonacci constant tau), A275926 (deviation from A140101).
Sequence in context: A189369 A055048 A045930 * A276385 A109232 A064718
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 01 2008
STATUS
approved