OFFSET
1,2
FORMULA
EXAMPLE
Triangle begins:
1;
2, 3;
4, 14, 70;
8, 60, 620, 7200;
16, 248, 5208, 123008, 3098760;
32, 1008, 42672, 2032128, 103223568, 5461682688;
64, 4064, 345440, 33032192, 3369214496, 357969864704, 39119789090720; ...
For n=3, since A010060(k) = 0 at k={0,3,5,6}, then
T(3,k) = 0^k + 3^k + 5^k + 6^k for k=0..2;
and since A010060(k) = 1 at k={1,2,4,7}, we also have
T(3,k) = 1^k + 2^k + 4^k + 7^k for k=0..2.
For n=4, since A010060(k) = 0 at k={0,3,5,6,9,10,12,15}, then
T(4,k) = 0^k + 3^k + 5^k + 6^k + 9^k + 10^k + 12^k + 15^k for k=0..3;
and since A010060(k) = 1 at k={1,2,4,7,8,11,13,14}, we also have
T(4,k) = 1^k + 2^k + 4^k + 7^k + 8^k + 11^k + 13^k + 14^k for k=0..3.
PROG
(PARI) {T(n, k)=(1/2)*sum(j=0, 2^n-1, j^k)}
(PARI) {T(n, k)=local(Tnk=0); for(j=0, 2^n-1, if(subst(Pol(binary(j)), x, 1)%2==0, Tnk+=j^k)); Tnk}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, May 12 2008
STATUS
approved