|
|
A140026
|
|
Primes of the form 35x^2+39y^2.
|
|
1
|
|
|
179, 191, 491, 599, 659, 911, 1031, 1439, 1499, 1871, 2339, 2531, 2591, 3119, 3299, 3371, 3539, 3719, 3851, 4211, 4391, 5279, 5399, 5639, 5651, 6491, 6659, 6899, 6959, 7151, 7211, 7331, 8219, 8831, 8999, 9311, 9851, 10091, 10271, 10739, 10859
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Discriminant=-5460. See A139827 for more information.
|
|
LINKS
|
|
|
FORMULA
|
The primes are congruent to {179, 191, 491, 599, 659, 779, 911, 1031, 1199, 1271, 1439, 1499, 1691, 1751, 1871, 2279, 2291, 2339, 2531, 2591, 2759, 3119, 3299, 3371, 3431, 3539, 3719, 3851, 4211, 4391, 4559, 4631, 4811, 4859, 5279, 5399} (mod 5460).
|
|
MATHEMATICA
|
QuadPrimes2[35, 0, 39, 10000] (* see A106856 *)
|
|
PROG
|
(Magma) [ p: p in PrimesUpTo(13000) | p mod 5460 in {179, 191, 491, 599, 659, 779, 911, 1031, 1199, 1271, 1439, 1499, 1691, 1751, 1871, 2279, 2291, 2339, 2531, 2591, 2759, 3119, 3299, 3371, 3431, 3539, 3719, 3851, 4211, 4391, 4559, 4631, 4811, 4859, 5279, 5399} ]; // Vincenzo Librandi, Aug 06 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|