login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140018
Primes of the form 7x^2+195y^2.
1
7, 223, 307, 643, 787, 1123, 1567, 1627, 1783, 1867, 1987, 2203, 2803, 3307, 3463, 3547, 3583, 3967, 4483, 4903, 4987, 5323, 5647, 5683, 6247, 6823, 7027, 7243, 7507, 7867, 8263, 8287, 8923, 9007, 9043, 9547, 10303, 10723, 11863, 12043
OFFSET
1,1
COMMENTS
Discriminant=-5460. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {7, 187, 223, 307, 643, 787, 943, 1123, 1207, 1363, 1567, 1627, 1783, 1867, 1903, 1987, 2047, 2203, 2407, 2803, 2827, 3127, 3307, 3463, 3547, 3583, 3967, 4063, 4087, 4387, 4483, 4843, 4903, 4987, 5143, 5263, 5323} (mod 5460).
MATHEMATICA
QuadPrimes2[7, 0, 195, 10000] (* see A106856 *)
With[{nn=50}, Take[Select[Union[7First[#]^2+195Last[#]^2&/@Tuples[ Range[ 0, nn], 2]], PrimeQ], nn]] (* Harvey P. Dale, Aug 29 2014 *)
PROG
(Magma) [ p: p in PrimesUpTo(13000) | p mod 5460 in {7, 187, 223, 307, 643, 787, 943, 1123, 1207, 1363, 1567, 1627, 1783, 1867, 1903, 1987, 2047, 2203, 2407, 2803, 2827, 3127, 3307, 3463, 3547, 3583, 3967, 4063, 4087, 4387, 4483, 4843, 4903, 4987, 5143, 5263, 5323} ]; // Vincenzo Librandi, Aug 05 2012
CROSSREFS
Sequence in context: A145107 A231488 A231487 * A202655 A009488 A302059
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved