login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139978
Primes of the form 5x^2+152y^2.
1
5, 157, 197, 277, 397, 557, 613, 653, 733, 757, 853, 997, 1013, 1213, 1277, 1373, 1453, 1493, 1597, 1613, 1733, 1973, 2053, 2213, 2357, 2437, 2477, 2557, 2677, 2797, 2837, 3037, 3253, 3557, 3733, 3797, 3877, 4013, 4253, 4357, 4493, 4637
OFFSET
1,1
COMMENTS
Discriminant=-3040. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {5, 77, 93, 157, 197, 213, 237, 253, 277, 397, 453, 517, 533, 557, 613, 653, 693, 733, 757, 837, 853, 917, 957, 973, 997, 1013, 1037, 1157, 1213, 1277, 1293, 1317, 1373, 1413, 1453, 1493, 1517, 1597, 1613, 1677, 1717, 1733, 1757, 1773, 1797, 1917, 1973, 2037, 2053, 2077, 2133, 2173, 2213, 2253, 2277, 2357, 2373, 2437, 2477, 2493, 2517, 2533, 2557, 2677, 2733, 2797, 2813, 2837, 2893, 2933, 2973, 3013, 3037} (mod 3040).
MATHEMATICA
QuadPrimes2[5, 0, 152, 10000] (* see A106856 *)
PROG
(Magma) [p: p in PrimesUpTo(6000) | p mod 3040 in [5, 77, 93, 157, 197, 213, 237, 253, 277, 397, 453, 517, 533, 557, 613, 653, 693, 733, 757, 837, 853, 917, 957, 973, 997, 1013, 1037, 1157, 1213, 1277, 1293, 1317, 1373, 1413, 1453, 1493, 1517, 1597, 1613, 1677, 1717, 1733, 1757, 1773, 1797, 1917, 1973, 2037, 2053, 2077, 2133, 2173, 2213, 2253, 2277, 2357, 2373, 2437, 2477, 2493, 2517, 2533, 2557, 2677, 2733, 2797, 2813, 2837, 2893, 2933, 2973, 3013, 3037]]; // Vincenzo Librandi, Aug 03 2012
CROSSREFS
Sequence in context: A225165 A151577 A032391 * A304147 A305487 A305087
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved