login
A139972
Primes of the form 8x^2+65y^2.
1
73, 97, 137, 193, 353, 457, 577, 593, 617, 977, 1033, 1097, 1217, 1553, 1657, 1697, 1753, 1913, 2017, 2113, 2137, 2153, 2273, 2377, 2593, 2633, 2657, 2777, 2897, 2953, 3217, 3257, 3313, 3593, 3673, 3697, 3833, 4153, 4217, 4297, 4337, 4457
OFFSET
1,1
COMMENTS
Discriminant=-2080. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {33, 57, 73, 97, 137, 177, 193, 297, 353, 457, 473, 513} (mod 520).
MATHEMATICA
QuadPrimes2[8, 0, 65, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 520 in [33, 57, 73, 97, 137, 177, 193, 297, 353, 457, 473, 513]]; // Vincenzo Librandi, Aug 02 2012
CROSSREFS
Sequence in context: A336332 A034848 A168110 * A268426 A155573 A107008
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved