login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A139934
Primes of the form 15x^2+22y^2.
2
37, 103, 157, 223, 367, 397, 463, 487, 727, 757, 823, 1087, 1093, 1213, 1237, 1303, 1423, 1453, 1543, 1567, 1783, 2143, 2293, 2557, 2677, 2797, 2887, 3037, 3463, 3613, 3727, 3733, 3853, 3877, 3943, 4093, 4327, 4357, 4423, 4447, 4783, 4933
OFFSET
1,1
COMMENTS
Discriminant=-1320. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {37, 103, 133, 157, 223, 247, 367, 397, 463, 487, 493, 727, 757, 823, 973, 1087, 1093, 1213, 1237, 1303} (mod 1320).
MATHEMATICA
QuadPrimes2[15, 0, 22, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 1320 in [37, 103, 133, 157, 223, 247, 367, 397, 463, 487, 493, 727, 757, 823, 973, 1087, 1093, 1213, 1237, 1303]]; // Vincenzo Librandi, Aug 02 2012
CROSSREFS
Sequence in context: A351141 A090496 A005107 * A142051 A282852 A171833
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved