login
A139929
Primes of the form 3x^2+110y^2.
1
3, 113, 137, 257, 353, 443, 467, 587, 617, 683, 947, 977, 1193, 1307, 1433, 1523, 1697, 1787, 1907, 2003, 2027, 2267, 2297, 2633, 2753, 2777, 2843, 2897, 2963, 3083, 3257, 3323, 3347, 3617, 3833, 3947, 4073, 4217, 4283, 4337, 4547, 4643
OFFSET
1,1
COMMENTS
Discriminant=-1320. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {3, 113, 137, 203, 257, 323, 353, 377, 443, 467, 587, 617, 683, 707, 713, 947, 977, 1043, 1193, 1307, 1313} (mod 1320).
MATHEMATICA
QuadPrimes2[3, 0, 110, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(6000) | p mod 1320 in [3, 113, 137, 203, 257, 323, 353, 377, 443, 467, 587, 617, 683, 707, 713, 947, 977, 1043, 1193, 1307, 1313]]; // Vincenzo Librandi, Aug 02 2012
CROSSREFS
Sequence in context: A221618 A300814 A075051 * A142603 A350053 A249164
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved