login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse binomial transform of [0, A133474].
2

%I #6 Mar 08 2021 16:40:22

%S 0,0,0,0,1,1,3,4,10,18,39,75,153,302,608,1212,2429,4853,9711,19416,

%T 38838,77670,155347,310687,621381,1242754,2485516,4971024,9942057,

%U 19884105,39768219,79536428,159072866,318145722,636291455,1272582899,2545165809,5090331606,10180663224,20361326436,40722652885,81445305757

%N Inverse binomial transform of [0, A133474].

%H G. C. Greubel, <a href="/A139797/b139797.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: x^4/((1+x)^2 * (1-2*x) * (1-x+x^2)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009

%F a(n) = ( (3*n-4)*(-1)^n +2^n +3*ChebyshevU(n, 1/2) -6*ChebyshevU(n-1, 1/2) )/27. - _G. C. Greubel_, Mar 08 2021

%t Table[((3*n-4)*(-1)^n +2^n +3*ChebyshevU[n, 1/2] -6*ChebyshevU[n-1, 1/2])/27, {n, 0, 60}] (* _G. C. Greubel_, Mar 08 2021 *)

%o (Sage) [( (3*n-4)*(-1)^n +2^n +3*chebyshev_U(n, 1/2) -6*chebyshev_U(n-1, 1/2) )/27 for n in (0..60)] # _G. C. Greubel_, Mar 08 2021

%o (Magma)

%o f:= func< n | Evaluate(ChebyshevU(n+1), 1/2) >;

%o [n eq 0 select 0 else ((3*n-4)*(-1)^n +2^n +3*f(n) -6*f(n-1))/27: n in [0..60]]; // _G. C. Greubel_, Mar 08 2021

%Y Cf. A010892.

%K nonn

%O 0,7

%A _Paul Curtz_, May 22 2008

%E Edited by _R. J. Mathar_, Sep 08 2009

%E Terms a(29) onward added by _G. C. Greubel_, Mar 08 2021