login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139621 Triangle read by rows: T(n,k) is the number of connected directed multigraphs with loops and no vertex of degree 0, with n arcs and k vertices. 5
1, 1, 1, 1, 4, 3, 1, 8, 15, 8, 1, 16, 57, 66, 27, 1, 25, 163, 353, 295, 91, 1, 40, 419, 1504, 2203, 1407, 350, 1, 56, 932, 5302, 12382, 13372, 6790, 1376, 1, 80, 1940, 16549, 58237, 96456, 80736, 33628, 5743, 1, 105, 3743, 46566, 237904, 573963, 717114, 482730, 168645, 24635 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Length of the n-th row: n+1.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1325

R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 (2017) Table 71.

FORMULA

T(n,1) = 1.

T(n,2) = A136564(n,2) - floor(n/2).

EXAMPLE

Triangle begins:

     1

     1     1

     1     4     3

     1     8    15     8

     1    16    57    66    27

     1    25   163   353   295    91

     1    40   419  1504  2203  1407   350

     1    56   932  5302 12382 13372  6790  1376

T(2 arcs, 2 vertices) = 4: one graph 1->1, 2->1; one graph with 1->1, 1->2; one graph with 2->1, 2->1, one graph with 1->2, 2->1.

T(2 arcs, 3 vertices) = 3: one graph 2->1, 3->1; one graph 2->1, 3->2; one graph 2->1, 2->3.

PROG

(PARI)

InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i) )}

permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}

G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i)); s/n!}

T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}

{my(A=T(10)); for(n=1, #A, print(A[n, 1..n]))} \\ Andrew Howroyd, Oct 22 2019

CROSSREFS

Cf. A129620, A136564, A139622, A137975 (row sums), A000238 (diagonal).

Sequence in context: A128007 A098458 A165914 * A305621 A196841 A165732

Adjacent sequences:  A139618 A139619 A139620 * A139622 A139623 A139624

KEYWORD

nonn,tabl

AUTHOR

Benoit Jubin, May 01 2008

EXTENSIONS

Prepended a(0)=1 to have a regular triangle, Joerg Arndt, Apr 14 2013

More terms from R. J. Mathar, Jul 31 2017

Terms a(34) and beyond from Andrew Howroyd, Oct 22 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 6 19:52 EDT 2021. Contains 343586 sequences. (Running on oeis4.)