Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 21 2018 16:54:22
%S 1,1,1,1,1,1,10,2,2,2,2,2,2,18,3,3,3,3,3,3,26,4,4,4,4,4,4,34,5,5,5,5,
%T 5,5,42,6,6,6,6,6,6,50,7,7,7,7,7,7,58,8,8,8,8,8,8,66,9,9,9,9,9,9,74,
%U 10,10,10,10,10,10,82,11,11,11,11,11,11,90,12,12,12,12,12,12,98,13,13,13,13
%N First differences of Frobenius numbers for 8 successive numbers A138988.
%C For first differences of Frobenius numbers for 2 successive numbers see A005843
%C For first differences of Frobenius numbers for 3 successive numbers see A014682
%C For first differences of Frobenius numbers for 4 successive numbers see A138995
%C For first differences of Frobenius numbers for 5 successive numbers see A138996
%C For first differences of Frobenius numbers for 6 successive numbers see A138997
%C For first differences of Frobenius numbers for 7 successive numbers see A138998
%C For first differences of Frobenius numbers for 8 successive numbers see A138999
%H Harvey P. Dale, <a href="/A138999/b138999.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = A138988(n+1) - A138988(n).
%F From _R. J. Mathar_, Apr 20 2008: (Start)
%F G.f.: -(-1-x-x^2-x^3-x^4-x^5-10*x^6+2*x^13)/((x-1)^2*(x^6+x^5+x^4+x^3+x^2+x+1)^2).
%F a(n) = 2*a(n-7) - a(n-14).
%F (End)
%F a(n) = -(1/7)*mod(n,7)*x(7+mod(n,7))+(1/7)*mod(n,7)*x(mod(n,7))+x(mod(n,7))-(1/7)*n *x(mod(n,7))+(1/7)*n*x(7+mod(n,7)). - _Alexander R. Povolotsky_, Apr 20 2008
%t a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7, n + 8}]], {n, 1, 100}]; Differences[a]
%t Differences[Table[FrobeniusNumber[Range[n,n+7]],{n,2,90}]] (* _Harvey P. Dale_, Oct 02 2011 *)
%Y Cf. A028387, A037165, A079326, A138985, A138986, A138987, A138988, A138989, A138990, A138991, A138992, A138993, A138994, A138995, A138996, A138997, A138998, A138999.
%K nonn
%O 1,7
%A _Artur Jasinski_, Apr 05 2008