Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 25 2019 03:13:37
%S 1,0,1,0,3,0,15,0,104,0,909,0,9449,0,112398,0,1489410,0,21562086,0,
%T 336086022,0,5577242292,0,97671172836,0,1792348213025,0,
%U 34268124834495,0,679376016769260,0,13911118850603610,0,293220749128031010,0
%N Moment sequence of tr(A) in USp(6).
%C If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A))^n] is the n-th moment of the trace of A.
%C The multiplicity of the trivial representation in the n-th tensor power of the standard representation of USp(6).
%C Number of returning walks of length n on a cubic lattice remaining in the chamber x >= y >= z >= 0.
%C Under a generalized Sato-Tate conjecture, this is the moment sequence of the distribution of unitarized Frobenius traces a_p/sqrt(p) (as p varies), for almost all genus 3 curves.
%C For genus g the mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=g, where F_m(z) = Sum_j binomial(m,j)(I_{2j-m}(2z)-I_{2j-m+2}) and I_k(z) is the hyperbolic Bessel function (of the first kind) of order k.
%C Dimension of space of invariant tensors in n-th tensor power of natural representation of Sp(6). - _Bruce Westbury_, Dec 05 2014
%H David J. Grabiner and Peter Magyar, <a href="http://dx.doi.org/10.1023/A:1022499531492">Random walks in Weyl chambers and the decomposition of tensor powers</a>, Journal of Algebraic Combinatorics, vol. 2 (1993), no. 3, pp 239-260.
%H Nicholas M. Katz and Peter Sarnak, <a href="http://bookstore.ams.org/coll-45/">Random Matrices, Frobenius Eigenvalues and Monodromy</a>, AMS, 1999.
%H Kiran S. Kedlaya and Andrew V. Sutherland, <a href="http://arXiv.org/abs/0803.4462">Hyperelliptic curves, L-polynomials and random matrices</a>, arXiv:0803.4462 [math.NT], 2008-2010.
%H G. Lachaud, <a href="http://arxiv.org/abs/1506.06482">On the distribution of the trace in the unitary symplectic group and the distribution of Frobenius</a>, arXiv preprint arXiv:1506.06482 [math.AG], 2015.
%F mgf: A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(I_{2j-m}(2z)-I_{2j-m+2}(2z)) and I_k(z) is the hyperbolic Bessel function (of the first kind) of order k.
%e a(4)=3 because E[(tr(A)^4] = 3 for a random matrix A in USp(6).
%t F[m_][z_] := Sum[Binomial[m, j] (BesselI[2j-m, 2z] - BesselI[2j-m+2, 2z]), {j, 0, m}];
%t A[z_] := Det[Table[F[i+j-2][z], {i, 1, 3}, {j, 1, 3}]];
%t a[n_] := a[n] = Derivative[n][A][0];
%t Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* _Jean-François Alcover_, Feb 17 2019 *)
%Y Cf. A138349.
%K nonn
%O 0,5
%A _Andrew V. Sutherland_, Mar 24 2008, Apr 01 2008