login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138377
a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 2; thereafter a(n) = -4*a(n-4).
3
0, 1, 3, 2, 0, -4, -12, -8, 0, 16, 48, 32, 0, -64, -192, -128, 0, 256, 768, 512, 0, -1024, -3072, -2048, 0, 4096, 12288, 8192, 0, -16384, -49152, -32768, 0, 65536, 196608, 131072, 0, -262144, -786432, -524288, 0, 1048576, 3145728, 2097152, 0, -4194304, -12582912, -8388608, 0, 16777216, 50331648
OFFSET
0,3
COMMENTS
First and third differences have only 2^n's.
FORMULA
From R. J. Mathar, May 09 2008: (Start)
O.g.f.: x*(1+x)*(2*x+1)/((1-2*x+2*x^2)*(1+2*x+2*x^2)).
a(n) = (5*A009545(n) - A108520(n))/4. (End)
MATHEMATICA
LinearRecurrence[{0, 0, 0, -4}, {0, 1, 3, 2}, 60] (* Harvey P. Dale, Mar 19 2012 *)
PROG
(PARI) x='x+O('x^25); Vec(x*(1+x)*(2*x+1)/((1-2*x+2*x^2)*(1+2*x+2*x^2))) \\ G. C. Greubel, Feb 20 2017
CROSSREFS
Sequence in context: A011231 A198223 A331095 * A021316 A092092 A308179
KEYWORD
sign,easy
AUTHOR
Paul Curtz, May 08 2008
STATUS
approved