login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A054320(n) - A001078(n).
13

%I #53 Jan 25 2024 04:51:28

%S 1,9,89,881,8721,86329,854569,8459361,83739041,828931049,8205571449,

%T 81226783441,804062262961,7959395846169,78789896198729,

%U 779939566141121,7720605765212481,76426118085983689,756540575094624409,7488979632860260401,74133255753507979601,733843577902219535609

%N a(n) = A054320(n) - A001078(n).

%C Numbers k such that 6*k^2 - 2 is a square. - _Bruno Berselli_, Feb 10 2014

%D H. Brocard, Note #2049, L'Intermédiaire des Mathématiciens, 8 (1901), pp. 212-213. - _N. J. A. Sloane_, Mar 02 2022

%H Vincenzo Librandi, <a href="/A138288/b138288.txt">Table of n, a(n) for n = 0..1000</a>

%H Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, <a href="https://arxiv.org/abs/2401.13524">Combinatorics on words and generating Dirichlet series of automatic sequences</a>, arXiv:2401.13524 [math.CO], 2024.

%H Bruno Deschamps, <a href="http://dx.doi.org/10.1016/j.jnt.2010.06.006">Sur les bonnes valeurs initiales de la suite de Lucas-Lehmer</a>, Journal of Number Theory, Volume 130, Issue 12, December 2010, Pages 2658-2670.

%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).

%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_1.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).

%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_2.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).

%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_3.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10, -1).

%F a(n) = A072256(n+1).

%F a(n) = A001079(n) + 2*A001078(n).

%F a(n) = 10*a(n-1) - a(n-2). a(-1) = a(0) = 1.

%F (sqrt(2)+sqrt(3))^(2*n+1) = A054320(n-1)*sqrt(2) + a(n)*sqrt(3).

%F From _Michael Somos_, Jan 25 2013: (Start)

%F G.f.: (1 - x) / (1 - 10*x + x^2).

%F a(-1-n) = a(n). (End)

%F a(n) = sqrt(2+(5-2*sqrt(6))^(1+2*n)+(5+2*sqrt(6))^(1+2*n))/(2*sqrt(3)). - _Gerry Martens_, Jun 04 2015

%F E.g.f.: exp(5*x)*(3*cosh(2*sqrt(6)*x) + sqrt(6)*sinh(2*sqrt(6)*x))/3. - _Stefano Spezia_, May 16 2023

%e 1 + 9*x + 89*x^2 + 881*x^3 + 8721*x^4 + 86329*x^5 + ...

%t CoefficientList[Series[(1 - x)/(1 - 10 x + x^2), {x, 0, 40}], x] (* _Vincenzo Librandi_, Feb 12 2014 *)

%t a[c_, n_] := Module[{},

%t p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];

%t d := Denominator[Convergents[Sqrt[c], n p]];

%t t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];

%t Return[t];

%t ] (* Complement of A041007, A041039 *)

%t a[6, 20] (* _Gerry Martens_, Jun 07 2015 *)

%o (Sage) [lucas_number1(n,10,1)-lucas_number1(n-1,10,1) for n in range(1, 20)] # _Zerinvary Lajos_, Nov 10 2009

%o (PARI) {a(n) = subst( poltchebi(n+1) + poltchebi(n), x, 5) / 6} /* _Michael Somos_, Jan 25 2013 */

%Y Cf. A001078, A001079, A072256, A138281.

%Y Cf. similar sequences listed in A238379.

%Y Cf. A041007, A041039, A054320.

%K nonn,easy

%O 0,2

%A _Reinhard Zumkeller_, Mar 12 2008