login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138156
Sum of the path lengths of all binary trees with n edges.
5
0, 2, 14, 74, 352, 1588, 6946, 29786, 126008, 527900, 2195580, 9080772, 37392864, 153434536, 627778954, 2562441466, 10438340104, 42449348236, 172376641924, 699100282156, 2832205421824, 11462854280536, 46354571222164
OFFSET
0,2
COMMENTS
a(n) = 2*A006419(n).
If (2*n+3) prime, then A138156(n) mod (2*n+3) == 0. - Alzhekeyev Ascar M, Jul 19 2011
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1997, Vol. 1, p. 405 (exercise 5) and p. 595 (solution).
LINKS
Jean-Luc Baril and José L. Ramírez, Fibonacci and Catalan paths in a wall, 2023.
FORMULA
a(n) = 4^(n+1) - (3*n+4) * C(2*n+2,n+1)/(n+2).
G.f.: 1/(z*(1-4*z)) - ((1-z)/sqrt(1-4*z)-1)/z^2.
D-finite with recurrence (n+2)*a(n) +(-9*n-10)*a(n-1) +2*(12*n+1)*a(n-2) +8*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(1) = 2 because the trees with one edge are (i) root with a left child and (ii) root with a right child, each having path length 1.
MAPLE
a:= n-> 4^(n+1)-(3*n+4)*binomial(2*n+2, n+1)/(n+2): seq(a(n), n=0..22);
MATHEMATICA
Table[4^(n+1)-(3n+4) Binomial[2n+2, n+1]/(n+2), {n, 0, 30}] (* Harvey P. Dale, Dec 14 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 20 2008
STATUS
approved