Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 02 2024 08:59:29
%S 1,10,46,244,1252,6472,33400,172432,890128,4595104,23721184,122455360,
%T 632148544,3263326336,16846196608,86964744448,448936157440,
%U 2317533096448,11963749330432,61760195900416,318823279584256
%N a(1) = 1, a(2) = 10; for n>2, a(n+1) = 4*a(n) + 6*a(n-1). Also a(n) = upper left term in the 2 X 2 matrix [1,3; 3,3].
%H Harvey P. Dale, <a href="/A138041/b138041.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4, 6).
%F a(n)/a(n-1) tends to (2 + sqrt(10)) = 5.16227766... (a root of x^2 - 4*x - 6 and an eigenvalue of the matrix).
%F a(n) mod 9 == 1.
%F O.g.f.: -x*(1+6*x)/(-1+4*x+6*x^2). a(n) = A085939(n)+6*A085939(n-1). - _R. J. Mathar_, Mar 03 2008
%F From the characteristic polynomial of the matrix we get g.f.: (6*x + 1)/(-6*x^2 - 4*x + 1), with roots a=-(2+sqrt(10))/6, b=-(2-sqrt(10))/6. Let A=3+3*sqrt(10)/10 and B=3-3*sqrt(10)/10. Then a(n) = (A*(1/a)^n + B*(1/b)^n)/6. - Lambert Herrgesell (zero815(AT)googlemail.com), Apr 04 2008
%e a(4) = 244 = 4*46 + 6*10 = 4*a(3) + 6*a(2).
%e a(4) = 244 = upper left term in [1,3; 3,3]^4.
%t a = {1, 10}; Do[AppendTo[a, 4*a[[ -1]] + 6*a[[ -2]]], {25}]; a (* _Stefan Steinerberger_ *)
%t LinearRecurrence[{4,6},{1,10},30] (* _Harvey P. Dale_, Mar 09 2014 *)
%K nonn
%O 1,2
%A _Gary W. Adamson_, Mar 02 2008
%E More terms from _Stefan Steinerberger_ and _R. J. Mathar_, Mar 02 2008
%E Definition corrected by _Paolo P. Lava_, Jun 03 2008