login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138041
a(1) = 1, a(2) = 10; for n>2, a(n+1) = 4*a(n) + 6*a(n-1). Also a(n) = upper left term in the 2 X 2 matrix [1,3; 3,3].
1
1, 10, 46, 244, 1252, 6472, 33400, 172432, 890128, 4595104, 23721184, 122455360, 632148544, 3263326336, 16846196608, 86964744448, 448936157440, 2317533096448, 11963749330432, 61760195900416, 318823279584256
OFFSET
1,2
FORMULA
a(n)/a(n-1) tends to (2 + sqrt(10)) = 5.16227766... (a root of x^2 - 4*x - 6 and an eigenvalue of the matrix).
a(n) mod 9 == 1.
O.g.f.: -x*(1+6*x)/(-1+4*x+6*x^2). a(n) = A085939(n)+6*A085939(n-1). - R. J. Mathar, Mar 03 2008
From the characteristic polynomial of the matrix we get g.f.: (6*x + 1)/(-6*x^2 - 4*x + 1), with roots a=-(2+sqrt(10))/6, b=-(2-sqrt(10))/6. Let A=3+3*sqrt(10)/10 and B=3-3*sqrt(10)/10. Then a(n) = (A*(1/a)^n + B*(1/b)^n)/6. - Lambert Herrgesell (zero815(AT)googlemail.com), Apr 04 2008
EXAMPLE
a(4) = 244 = 4*46 + 6*10 = 4*a(3) + 6*a(2).
a(4) = 244 = upper left term in [1,3; 3,3]^4.
MATHEMATICA
a = {1, 10}; Do[AppendTo[a, 4*a[[ -1]] + 6*a[[ -2]]], {25}]; a (* Stefan Steinerberger *)
LinearRecurrence[{4, 6}, {1, 10}, 30] (* Harvey P. Dale, Mar 09 2014 *)
CROSSREFS
Sequence in context: A115712 A199313 A003765 * A351901 A219597 A000832
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Mar 02 2008
EXTENSIONS
More terms from Stefan Steinerberger and R. J. Mathar, Mar 02 2008
Definition corrected by Paolo P. Lava, Jun 03 2008
STATUS
approved