Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:45:33
%S 1,7,15,153,329,3359,7223,73745,158577,1619031,3481471,35544937,
%T 76433785,780369583,1678061799,17132585889,36840925793,376136519975,
%U 808822305647,8257870853561,17757249798441,181297022258367,389850673260055,3980276618830513,8558957561922769
%N a(n) = sqrt(A137880(n)).
%C A137880 gives the indices m (= a(n)^2) of perfect squares in 17-gonal numbers A051869(m) = m(15m -13)/2. Corresponding 17-gonal numbers are listed in A137878(n) = A051869( a(n)^2 ).
%C Positive values of x (or y) satisfying x^2 - 22xy + y^2 + 104 = 0. - _Colin Barker_, Feb 19 2014
%H Vincenzo Librandi, <a href="/A137881/b137881.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,22,0,-1).
%F a(n) = sqrt(A137880(n)). A051869( a(n)^2 ) = A137878(n).
%F For n>=5, a(n) = 22*a(n-2) - a(n-4). [Alekseyev]
%F a(2n) = (15 - sqrt(30))/30 * (11 + 2*sqrt(30))^n + (15 + sqrt(30))/30 * (11 - 2*sqrt(30))^n. [Alekseyev]
%F a(2n+1) = (15 + sqrt(30))/30 * (11 + 2*sqrt(30))^n + (15 - sqrt(30))/30 * (11 - 2*sqrt(30))^n. [Alekseyev]
%F G.f.: -x*(x-1)*(x^2+8*x+1) / (x^4-22*x^2+1). - _Colin Barker_, Feb 19 2014
%t CoefficientList[Series[(1 - x) (x^2 + 8 x + 1)/(x^4 - 22 x^2 + 1), {x, 0, 40}], x] (* _Vincenzo Librandi_, Feb 21 2014 *)
%o (Magma) I:=[1,7,15,153]; [n le 4 select I[n] else 22*Self(n-2)-Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Feb 21 2014
%Y Cf. A051869 (17-gonal numbers), A137878 (17-gonal numbers that are perfect squares), A137879, A137880.
%K nonn,easy
%O 1,2
%A _Alexander Adamchuk_, Feb 19 2008
%E Edited and extended by _Max Alekseyev_, Oct 19 2008