login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137881
a(n) = sqrt(A137880(n)).
5
1, 7, 15, 153, 329, 3359, 7223, 73745, 158577, 1619031, 3481471, 35544937, 76433785, 780369583, 1678061799, 17132585889, 36840925793, 376136519975, 808822305647, 8257870853561, 17757249798441, 181297022258367, 389850673260055, 3980276618830513, 8558957561922769
OFFSET
1,2
COMMENTS
A137880 gives the indices m (= a(n)^2) of perfect squares in 17-gonal numbers A051869(m) = m(15m -13)/2. Corresponding 17-gonal numbers are listed in A137878(n) = A051869( a(n)^2 ).
Positive values of x (or y) satisfying x^2 - 22xy + y^2 + 104 = 0. - Colin Barker, Feb 19 2014
FORMULA
a(n) = sqrt(A137880(n)). A051869( a(n)^2 ) = A137878(n).
For n>=5, a(n) = 22*a(n-2) - a(n-4). [Alekseyev]
a(2n) = (15 - sqrt(30))/30 * (11 + 2*sqrt(30))^n + (15 + sqrt(30))/30 * (11 - 2*sqrt(30))^n. [Alekseyev]
a(2n+1) = (15 + sqrt(30))/30 * (11 + 2*sqrt(30))^n + (15 - sqrt(30))/30 * (11 - 2*sqrt(30))^n. [Alekseyev]
G.f.: -x*(x-1)*(x^2+8*x+1) / (x^4-22*x^2+1). - Colin Barker, Feb 19 2014
MATHEMATICA
CoefficientList[Series[(1 - x) (x^2 + 8 x + 1)/(x^4 - 22 x^2 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 21 2014 *)
PROG
(Magma) I:=[1, 7, 15, 153]; [n le 4 select I[n] else 22*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 21 2014
CROSSREFS
Cf. A051869 (17-gonal numbers), A137878 (17-gonal numbers that are perfect squares), A137879, A137880.
Sequence in context: A243470 A068366 A156499 * A042725 A041096 A248275
KEYWORD
nonn,easy
AUTHOR
Alexander Adamchuk, Feb 19 2008
EXTENSIONS
Edited and extended by Max Alekseyev, Oct 19 2008
STATUS
approved