login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137331
a(n) = 1 if the binary weight of n is prime, otherwise 0.
1
0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1
OFFSET
0,1
FORMULA
a(n) = A010051(A000120(n)). - R. J. Mathar, Apr 09 2008
EXAMPLE
a(0) = 0 (binary). Bits set = 0, 0 not prime -> 0.
a(1) = 1 (binary). Bits set = 1, 1 not prime -> 0.
a(2) = 10 (binary). Bits set = 1, 1 not prime -> 0.
a(3) = 11 (binary). Bits set = 2, 2 prime -> 1.
MAPLE
A000120 := proc(n) add(i, i=convert(n, base, 2)) ; end: A010051 := proc(n) if isprime(n) then 1 ; else 0 ; fi ; end: A137331 := proc(n) A010051(A000120(n)) ; end: seq(A137331(n), n=0..200) ; # R. J. Mathar, Apr 09 2008
MATHEMATICA
Table[If[PrimeQ[Plus @@ IntegerDigits[n, 2]], 1, 0], {n, 0, 100}] (* Stefan Steinerberger, Apr 09 2008 *)
PROG
(PARI)f(n)={v=binary(n); s=0; for(k=1, #v, if(v[k]== 1, s++)); return(isprime(s))}; for(n=0, 104, if(f(n), print1("1, "), print1("0, "))) \\ Washington Bomfim, Jan 14 2011
CROSSREFS
Begins the same as A135136, but differs starting at a(31).
Sequence in context: A350866 A252743 A135136 * A093386 A219098 A288710
KEYWORD
nonn,easy,base
AUTHOR
George Pollard, Apr 07 2008
EXTENSIONS
More terms from R. J. Mathar and Stefan Steinerberger, Apr 09 2008
STATUS
approved