The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137307 A triangular sequence of coefficients of even plus odd Chebyshev polynomials, A053120: q(x,n)=T(x,2*n-1]+T(x,2*n). 0

%I #4 Mar 30 2012 17:34:26

%S 1,1,-1,1,2,1,-3,-8,4,8,-1,5,18,-20,-48,16,32,1,-7,-32,56,160,-112,

%T -256,64,128,-1,9,50,-120,-400,432,1120,-576,-1280,256,512,1,-11,-72,

%U 220,840,-1232,-3584,2816,6912,-2816,-6144,1024,2048,-1,13,98,-364,-1568,2912,9408,-9984,-26880,16640,39424,-13312,-28672

%N A triangular sequence of coefficients of even plus odd Chebyshev polynomials, A053120: q(x,n)=T(x,2*n-1]+T(x,2*n).

%C The row sums are all 2 and double integrations are all orthogonal except for the zero to one level.

%C This arose from an idea of Chladni Chebyshev's:

%C q(Exp[i*t],n)=T(Cos[2*Pi*t),2*n-1)+T(Sin(2*Pi*t),2*n)

%C which are strange looping spirals.

%F q(x,n)=T(x,2*n-1]+T(x,2*n).

%e {1, 1},

%e {-1, 1, 2},

%e {1, -3, -8, 4, 8},

%e {-1, 5,18, -20, -48, 16, 32},

%e {1, -7, -32, 56, 160, -112, -256, 64, 128},

%e {-1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512},

%e {1, -11, -72, 220, 840, -1232, -3584, 2816, 6912, -2816, -6144, 1024, 2048},

%e {-1, 13, 98, -364, -1568, 2912, 9408, -9984, -26880, 16640, 39424, -13312, -28672, 4096, 8192},

%e {1, -15, -128, 560, 2688, -6048, 21504, 28800, 84480, -70400, -180224, 92160, 212992, -61440, -131072, 16384, 32768},

%e {-1, 17, 162, -816, -4320, 11424, 44352, -71808, -228096, 239360, 658944, -452608, -1118208, 487424, 1105920, -278528, -589824, 65536, 131072},

%e {1, -19, -200, 1140, 6600, -20064, -84480, 160512, 549120, -695552, -2050048, 1770496, 4659200, -2723840, -6553600, 2490368, 5570560, -1245184, -2621440, 262144, 524288}

%t Q[x_, n_] := ChebyshevT[2*n - 1, x] + ChebyshevT[2*n, x]; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a0 = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a0]

%Y Cf. A053120.

%K uned,tabl,sign

%O 1,5

%A _Roger L. Bagula_, Apr 20 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 11:52 EDT 2024. Contains 372858 sequences. (Running on oeis4.)