login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137296
Antidiagonal triangular matrices of factorials as the example: M(3)={{0, 0, 1}, {0, 1, 2}, {1, 2, 6}}; the matrices are used to get characteristic polynomials and the triangular sequence is the coefficients of those characteristic polynomials.
0
1, 0, -1, -1, -2, 1, -1, -1, 7, -1, 1, 10, 6, -26, 1, 1, 45, -36, -224, 127, -1, -1, -306, -957, 1172, 3709, -746, 1, -1, -2357, -14379, 37397, 67621, -106887, 5167, -1, 1, 20690, 803492, 1325962, -4532586, -6300786, 4147412, -41066, 1, 1, 201733, 49001186, 51278654, -546386064, -208428708, 1389178142
OFFSET
1,5
COMMENTS
This set of matrices was inspired by the Cornelius-Schultz triangular n! matrices and the Steinbach like ones antidiagonal matrix:
The row sums are {1, -1, -2, 4, -8, -88, 2872, -13440, -4576880, 511742560, 19591271488}.
FORMULA
M(n)->If greater than or equal to the middle antidiagonal, the antidiagonals are counted n->n!. Main antidiagonal is 1; second antidiagonal is 2!=1; third antidiagonal is 3!=6, etc.
EXAMPLE
{1},
{0, -1},
{-1, -2, 1},
{-1, -1, 7, -1},
{1, 10, 6, -26, 1},
{1, 45, -36, -224, 127, -1},
{-1, -306, -957, 1172, 3709, -746, 1},
{-1, -2357, -14379, 37397, 67621, -106887,5167, -1},
{1, 20690,803492, 1325962, -4532586, -6300786, 4147412, -41066, 1},
{1, 201733, 49001186, 51278654, -546386064, -208428708, 1389178142, -223470430, 368047, -1},
{-1, -2159026, -4071243531, -42916351880, -16447372250, 291803389596, 168497207674, -392959445624, 15690916395, -3669866, 1}
MATHEMATICA
T[d_] := Table[Table[If[n == m && n == 1, 0, If[n == m && (n + m) > d, ((m + n) - d)!, If[Abs[n - m] >= 0 && (n + m) > d, ((m + n) - d)!, 0]]], {n, 1, d}], {m, 1, d}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[T[d], x], x], \ {d, 1, 10}]]; Flatten[a]
CROSSREFS
Sequence in context: A049270 A025269 A265656 * A329291 A294105 A101124
KEYWORD
uned,sign
AUTHOR
Roger L. Bagula, Mar 15 2008
STATUS
approved