login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A137169
a(0) = 2; for n>0, a(n) = smallest number m > a(n-1) such that both m-n and m+n are primes.
2
2, 4, 5, 8, 9, 12, 13, 24, 39, 50, 51, 72, 85, 96, 117, 122, 123, 156, 175, 192, 213, 218, 219, 234, 247, 252, 255, 256, 279, 360, 367, 378, 399, 400, 423, 432, 455, 486, 525, 530, 531, 612, 619, 630, 657, 664, 687, 774, 775, 810, 837, 860, 915, 930, 937, 942
OFFSET
0,1
COMMENTS
A variant of A087711. - R. J. Mathar, Apr 09 2008
EXAMPLE
4-1=3 prime, 4+1=5 prime; 5-2=3, 5+2=7; 8-3=5, 8+3=11; 9-4=5, 9+4=13;
MAPLE
A137169 := proc(n) option remember ; if n = 0 then RETURN(2) ; fi ; for a from A137169(n-1)+1 do if isprime(a-n) and isprime(a+n) then RETURN(a) ; fi ; od: end: seq(A137169(n), n=0..80) ; # R. J. Mathar, Apr 09 2008
MATHEMATICA
s = ""; k = 0; For[i = 2, i < 22^2, If[PrimeQ[i - k] && PrimeQ[i + k], s = s <> ToString[i] <> ", "; k++ ]; i++ ]; Print[s]
CROSSREFS
See A087711 for another version.
Sequence in context: A188072 A296058 A189205 * A348458 A339816 A002541
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Apr 09 2008
Typo in Mathematica code corrected by Vincenzo Librandi, Jun 15 2013
STATUS
approved